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Abstract

Information design is typically studied through the lens of Bayesian signaling, where sig-
nals shape beliefs based on their correlation with the true state of the world. However, Be-
havioral Economics and Psychology emphasize that framing—how information is contextually
presented—is also a critical factor in decision-making. This paper formalizes a language-based
notion of framing and bridges this to a popular model of Bayesian signaling: Persuasion. We
model framing as a possibly non-Bayesian, linguistic way to influence a receiver’s prior belief,
while signaling further updates this belief in the classical Bayesian way. We analyze the compu-
tational complexity of jointly optimizing framing and signaling, as well as optimizing framing
under a fixed signaling scheme. Our theoretical results also outline the settings where even
minimal framing effects can significantly enhance a sender’s utility, as compared to signaling
alone. A key challenge in this optimization problem is the vast space of possible framings and
the difficulty of predicting their effects on receivers. We explore the potential of Large Language
Models (LLMs) to address these challenges and empirically validate an LLM-augmented opti-
mization framework for framing and signaling. By formally integrating framing with signaling
into a comprehensive model, we allow a systematic way to harness insights from Psychology and
AI-augmented decision-making to Information Design.

1 Introduction

Information design is a core concept in microeconomics and decision theory, and considers the
strategic communication of information from one party (i.e., sender) to shape the decisions of others
(i.e., receivers) [1]. While it has been extensively studied through different lenses, the persuasion
model, pioneered by Kamenica and Gentzkow [19], considers the decision-maker’s belief influenced
through a Bayesian approach and involves carefully engineering a signal that is correlated with
an observable world state. These quantitative signal-to-state correlations are all that matter in
such models. Crucially, they are agnostic to how signals or related metadata about the instance
are presented. Under this strict Bayesian persuasion framework, a Nike advertisement credibly
conveying the quality of a shoe (the signal) would be equally effective whether accompanied by the
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slogan “Wear Nike” or “Just Do It.” Similarly, a travel website describing a discounted trip as a
”blissful vacation” would, in theory, yield the same decision-making outcome as labeling it ”time
off.”

This perspective stands in strong contrast to established findings in behavioral economics and
psychology, which emphasize that framing — the linguistic, visual, and contextual presentation of
information — can significantly shape perception and choice, even when the underlying information
remains unchanged [29]. Framing can take several forms when considering it in conjunction with
signaling: (i) tangential information given before the signal; (ii) text or phrasing used to represent
or describe the signal; (iii) non-textual cues such as color, background images, fonts, etc, used
when transmitting the signal. Tversky and Kahneman [29] argue that such information combines
with societal norms to affect the perception of “acts, outcomes, and contingencies” in the decision-
maker. They compare it with how the same visual scene changes with the choice of vantage point.
Mullainathan et al. [23] define this phenomenon formally as a process called “Coarse Thinking” (as
opposed to “Bayesian Thinking”). Bordalo et al. [2], on the other hand, give a Bayesian perspective
of framing. These models are all supported by ample evidence that suggests framing plays a crucial
role in practically persuading decision-makers [9].

This paper formally combines the classic Bayesian signaling model popularized in the persuasion
literature with the aforementioned framing perspective, which has been extensively studied in
behavioral economics and psychology [29, 2, 13, 11]. Aligning ourselves with the perspective that
framing influences belief formation [13, 11] (rather than changing the perception about the payoffs),
our model assumes that the sender can use framing, alongside signaling, to influence the decision-
maker toward more favorable beliefs. For a given problem instance, we consider a possible framing
space C, where each framing c ∈ C leads to a receiver belief µc, with this mapping defined by
societal norms. In other words, we are agnostic to the process through which framing influences
beliefs, allowing for both Bayesian and non-Bayesian perspectives. Signaling, on the other hand, is
an information revelation strategy committed by the sender that correlates signals to the observed
world state. The belief update induced by signaling is Bayesian, mirroring the persuasion literature
[19, 12]. This model gives rise to three possible solution combinations for the sender:

(a) The framing (and thus the receiver’s initial belief) is fixed and cannot be altered; the sender
may only optimize the signaling scheme.

(b) The sender’s signaling scheme is fixed, and they may only optimize over the framing.

(c) The sender may jointly optimize over both framing and their signaling scheme.

The first setting can be seen as facing a receiver with a fixed but possibly distinct (from the sender)
prior belief. This is essentially captured by the large literature on Bayesian Persuasion. The key
thrust of this work is to study, both theoretically and empirically, settings (b) and (c). Setting (b)
is relevant where the sender must abide by an information revelation scheme they have committed
to in the past (e.g., abiding to a multi-year advertising strategy or regulation restrictions), but
can change the framing (e.g., endorsement, wording, etc.); setting (c) represents a sender with full
freedom to choose both.

Observing that framing is often conveyed through natural language, we consider a linguistic
framing space. Any quantitative treatment of such a setting must reconcile two key challenges: (a)
how to discern what belief a given framing may induce — i.e. the mapping from natural language
framing c to a mathematical distribution µc over the world states, and (b) how to systematically
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search over this large framing space that includes all instance-relevant language expressions. Until
recently, these challenges were a major obstacle to formally modeling and optimizing framing as an
alternative information design choice. However, recent breakthroughs in Large Language Models
(LLMs) offer powerful tools for addressing these two challenges, including understanding beliefs
induced by a natural language framing and searching over the language space to produce a good
framing. Indeed, as argued by influential recent works in economics (Horton [18], Brand et al.
[3], Dillion et al. [10]) LLMs can be used to simulate human behavior and perspectives on a host
of problems, or even be tuned as agents that can be delegated to make decisions for humans [16].
Therefore, it is an appropriate time to revisit and systematically study the use of framing within
information design.

1.1 Our Contributions

We propose a systematic, optimization-based perspective to information design that leverages both
framing and signaling, connecting perspectives from behavioral economics and psychology with a
classic model of Bayesian signaling: persuasion. This framework is formalized in Section 2, with two
possible design choices outlined for the sender — optimizing only framing and jointly optimizing
framing and signaling. We further argue that LLMs can play a key role within this model. In our
theoretical investigations for these optimization problems, we abstract the LLM as a belief oracle
that noisily maps a framing to its induced belief. Considering the framing-only strategy in Section 3,
we illustrate the discontinuous nature of sender utility due to framing changes, highlighting that
slight changes in framing can have a major impact. This highlights the sensitivity of We also
formally show the optimization problem to be NP-Hard, even to approximate. We answer the same
set of questions for the joint framing-signaling strategy design in Section 4. The sender utility now
becomes continuous in the framing space. We give a Quasi-Polynomial-Time Approximate Scheme
(QPTAS) to solve the general optimization problem. Lastly, we flesh out the promises of LLMs
for this setting in Section 5. Using a real-estate case study, we demonstrate the ability of LLMs
to act as a belief oracle, mapping framing to beliefs, and propose an end-to-end approach that
combines LLMs and mathematical solvers to search the joint framing-signaling space to return
strong candidates. Implications and open directions stemming from our work are discussed in
Section 6.

1.2 Additional Related Works

While our study of information design using framing from a theoretical and LLM-based perspective
is novel, our work does connect to three different lines of research. The first is the algorithmic study
of information design, which has attracted significant recent interest. This literature starts from
the complexity-theoretic study initiated by Dughmi and Xu [12], and lately has integrated many
aspects of machine learning to address unknowns in the setting [5, 15]. The only work that we
are aware of on the interface of persuasion and LLMs is [17], which studies a learning-theoretic
question about learning optimal sender signaling scheme from simulation feedback generated by
LLMs. This differs from our aim of introducing a new dimension, i.e., framing, to information
design. The second line of work is the economic research on framing, starting from the extremely
influential work of [29]. To the best of our knowledge, the main focus of this literature is to analyze
how the framing (i.e., description) of a decision making problem or a game description will affect the
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decisions or play by agents. Particularly relevant to us are a few influential findings showing that the
framing of an economic decision problem or persuasion can affect agents’ play through influencing
their beliefs [26, 13, 11]. For instance, Ellingsen et al. [13] show that naming the standard prisoner’s
dilemma game different (e.g., as the “Community Game” or “Stock Market Game”) will lead to
different players behaviors despite playing the same underlying game. These behavioral studies are
consistent with “the hypothesis that social frames are coordination devices.... enter people’s beliefs
rather than their preferences”. Nelson and Oxley [26] observe similar belief influence by framing in
persuasion problems. These behavioral studies motivate our principled study of using framing in
information design. Thirdly, and more loosely, our work subscribes to the recent studies of using
LLMs as proxies of human agents to understand the social norms they carry [18, 3, 20, 10]. Our
work subscribes to this general theme, but is different from these works in research questions.

2 Model

Preliminaries: Consider a standard persuasion model with two Bayesian rational players1: a
sender (persuader, with she/her pronouns) and a receiver (decision maker, with he/him pronouns).
Let ω ∈ Ω be a state of the world which will be known to the sender but not the receiver. The sender
has a prior belief µ0 ∈ ∆(Ω) over these world states, where ∆(Ω) denotes the set of all distributions
over Ω. Assume that the prior probability µ0(ω) > 0 for every state ω ∈ Ω. The receiver chooses
an action a from some finite action set A, which, along with the realized state ω, jointly determine
the utilities of both players2. Formally, the sender’s utility function is u : A × Ω → R and the
receiver’s utility function is v : A×Ω → R. Without loss of generality, we assume that every action
a ∈ A is (strictly) inducible: that is, for every a ∈ A, there is some belief µ ∈ ∆(Ω) wherein action
a is optimal for the receiver (i.e., Eω∼µ[v(ω, a)] > Eω∼µ[v(ω, a

′)] for all a′ ∈ A \ {a}); indeed if
this were not so, such an action can be safely ignored since the receiver will not take it under any
circumstance. Some of our computational results are about additive approximation, which requires
players’ utilities to be bounded. Hence without loss of generality we assume both players’ utilities
u, v are within [0, 1].3

Signaling: We propose a generalization of information design where the sender has two possible
levers through which she may influence the receiver’s actions. First, she may design and commit
to a signaling scheme to partially reveal the realized state ω. Formally, for a signaling space S,
the sender commits to a policy π : Ω → ∆(S), where π(s|ω) specifies the probability of sending
signal s ∈ S when the realized state is ω. The receiver, upon observing a signal s sampled from
this scheme, updates their belief over Ω and takes the expected utility maximizing action.

Framing: Novel to our work, and motivated by extensive behavioral studies, we posit that the
receiver’s belief can also be shaped through framing. Framing can most naturally be thought of
as natural language phrases or descriptions that accompany, describe, or convey the signal; thus,
the set of possible framings, denoted by C, can encompass all possible coherent text within some
linguistic and semantic constraints defined by the problem instance. To connect framing to belief,

1We model framing c as updating the receiver to some belief µc; this approach allows the framing induced update
to be possibly non-Bayesian

2We use 0 index for actions and states. That is, A = {a0, . . . , a|A|−1}, and Ω = {ω0, . . . , ω|Ω|−1}.
3If utilities are instead bounded within [−A,B], then it can be normalized to our [0, 1] setting without loss of

generality.
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consider a function ℓ : C → ∆(Ω) (also called a belief oracle) that directly maps a framing c to
the corresponding belief it induces in the receiver µc, with the set B = {ℓ(c) : c ∈ C} denoting all
inducible beliefs. This mapping abstracts out the belief update procedure, which could be Bayesian
or non-Bayesian. From a non-Bayesian perspective, the framing may simply form some receiver
belief inherited from common sense in human languages. To exposit the Bayesian perspective, one
can imagine that the receiver has some initial belief about the state ω, which was Bayesian updated
to µc based on certain “societally consensed” signaling σ(c|ω) after observing the framing c. In any
case, how the mapping ℓ was formed is not concerned by our model.

Our theoretical analysis considers oracle access to a possibly noisy/imperfect belief oracle ℓε,
which maps each framing to within ε of the true belief; formally, ∀c ∈ C, ||ℓ(c)−ℓε(c)||2 ≤ ε. Under
this setting, we formally consider the optimization problem of selecting the best c and the effect
of error ε in Sections 3 and 4. In Section 5, we empirically show that LLMs can indeed be used to
robustly approximate the framing-to-belief mapping function ℓ, serving as a justification for this
model primitive.

The framing space C (and thus the corresponding inducible belief set B) can be thought of
as either discrete or continuous. A discrete space is natural when considering framing in terms of
phrases or language. Conversely, the continuous perspective can be informative from a theoretical
perspective. In the continuous model, we assume the inducible beliefs form a convex subset of
the simplex ∆(Ω). While this may not immediately map to practice since linguistic framing space
is still discrete and not every belief is necessarily inducible through language, optimizing directly
over this continuous region is ostensibly a richer problem than optimizing over a large discrete set.
Thus, computational and structural results proved under this model are generally more insightful.
Our work considers both discrete and continuous framing spaces in the theoretical results, with the
experiments focusing on the former. We formalize these notions below:

Definition 1 (Framing Space). For a framing space C and a mapping from framings to induced
beliefs ℓ : C → ∆(Ω), let B = {ℓ(c) : c ∈ C} denote the set of inducible beliefs. In a discrete
framing space, both C and B are discrete. Correspondingly, in a continuous framing space, C is
continuous and B is assumed to be a convex subset of the belief simplex ∆(Ω).

Sender-Receiver Interactions and the Equilibrium: To map the model so far to our running
example of advertising, the advertiser can choose a slogan or description (the framing) that will
accompany their product, regardless of its hidden features/states (the state) or discount/buy rec-
ommendation (the signal). Consistent with prior literature on persuasion, the sender chooses their
strategy (framing and signaling scheme) before state realization; thereafter, the receiver takes their
best response action. This outlines a leader-follower game:

Definition 2 (Information Design Tuple). The tuple
(
c ∈ C, π : Ω → ∆(S)

)
is denoted as the

information design tuple. The sender first commits to such a tuple, and upon state realization ω,
the receiver observes the pair (c ∈ C, s ∼ π(·|ω)) and updates their belief from µc to a posterior

µc(ω | s) = µc(ω)π(s |ω)∑
ω′∈Ω µc(ω′)π(s |ω′) . The receiver then takes a best-response action that maximizes his

expected utility under this updated belief:

a∗c,s ∈ argmax
a∈A

∑
ω∈Ω

µc(ω | s)v(a, ω) = argmax
a∈A

∑
ω∈Ω

µc(ω)π(s |ω)v(a, ω). (1)

In Proposition 1, we show that randomizing over framing does not increase sender utility under
any variant of our problem. Hence, it is without loss of generality to consider them choosing a
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single/fixed framing. Since the receiver will best-respond to the sender’s choice of information design
strategy, the sender’s goal is to choose an optimal strategy that maximizes their ex-ante utility under
this best-responding behaviour. Formally, this corresponds to a Stackelberg equilibrium.

We study two variants of the sender’s design problem, corresponding to the solution combi-
nations mentioned in the introduction. First, the sender may only optimize the framing c under
a given/fixed signaling scheme. We denote this as the framing-only strategy and define such an
instance by I = (µ0, u, v, π). Secondly, the sender may optimize both elements of the information
design tuple (c, π) with such a joint strategy instance defined by I = (µ0, u, v). Note that the
third possible combination, optimizing only signaling for a fixed framing (i.e. receiver belief) is
essentially captured by the classical Bayesian Persuasion framework [19] and thus not the focus of
our work. In all cases, the sender is selecting a strategy to maximize their ex-ante utility for a
best-responding receiver:

Definition 3 (Equilibrium). The sender’s ex-ante utility for an information design tuple (c, π) is:

Eω,π[u(a
∗
c,s, ω)] =

∑
ω∈Ω

µ0(ω)
∑
s∈S

π(s |ω)u(a∗c,s, ω). (2)

where a∗c,s is defined in Eq. (1). In the framing-only strategy space, the sender’s equilibrium strategy
is argmaxc∈C Eω,s[u(a

∗
c,s, ω)] and under the joint strategy space, it is argmaxc∈C,π Eω,s[u(a

∗
c,s, ω)].

3 Framing-Only Strategy

Consider choosing a framing when the signaling scheme is fixed/given. Formally, given an infor-
mation design instance I = (µ0, u, v, π), the sender may only choose a framing c ∈ C. The optimal
framing c∗ corresponds to the Stackelberg equilibrium since choosing π is not part of the strategy
space. While we do not make any assumptions on π, we highlight an important observation. In
the classic literature on persuasion, it is without loss of generality to consider the signaling space
|S| to be as large as the action space |A| by leveraging a revelation-principle style argument [12].
This rests on combining signals that lead to the same action into a single “action-recommending”
signal. In the framing-only optimization setting, this ceases to be true since π is fixed in advance,
and the mapping from signals to receiver actions can be different under different receiver beliefs.
As such, we make no assumptions about the size of the signal space or its interpretation in this
section.

Why do we consider choosing a single framing c ∈ C, and not a distribution over framing? The
result below shows that randomizing over framings does not increase utility for the sender under
any scheme π. This means that it is without loss of generality to consider deterministic framing
both here and in the forthcoming section that studies jointly optimizing π and c (see Section 4).

Proposition 1. For any instance I, the optimal sender utility is not improved by choosing a
distribution over framings ∆(C).

3.1 The Effect of Framing on Sender Utility

How much can the sender improve their utility by manipulating framing when the signaling scheme
π is given? Does meaningful improvement require a framing whose induced belief is substantially
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far away from the underlying sender’s prior? How much does the optimal sender utility suffer if they
have a noisy mapping ℓε? To build intuition for these questions, consider the judge-lawyer example
Kamenica and Gentzkow [19] used to motivate canonical Bayesian Persuasion. A defendant may
either be innocent or guilty (the two possible states of the world), and the judge (receiver) decides
whether to acquit or convict the defendant, receiving utility 1 for the just action and 0 otherwise.
The lawyer (sender) observes the defendant’s true state and can signal accordingly to maximize their
utility, which is 1 for a conviction regardless of the state. Now suppose the lawyer, when innocent,
always recommends acquittal, and when guilty, recommends either action with probability 0.5. If
the lawyer’s prior belief over the states is [0.67, 0.33] and the judge shares this belief (as is the case
in Bayesian Persuasion), then the lawyer achieves utility 0. If, however, the lawyer can use framing
(style of argument/language) to slightly alter the judge’s belief to [23 ,

1
3 ], then the lawyer’s utility

under this very same signaling jumps to 0.66! This is due to the sender’s utility as a function of
the receiver’s belief in this instance not being continuous for the given scheme. This discontinuity
highlights the power of leveraging framings: for a fixed signaling, slightly altering the receiver’s
belief by framing can have a major impact on the sender’s expected utility.

To formalize this, let Uπ(µ) denote the sender’s expected utility for fixed signaling scheme π
when the receiver’s prior belief is µ. In the judge-lawyer instance, this function is discontinuous at
µ = [23 ,

1
3 ]. We show below that such discontinuities occur in general instances almost surely for a

large class of signaling schemes; specifically, schemes in which some signal s is sent with positive
probability at every state. Note that schemes not satisfying this condition are very revealing: upon
observing any signal s, the receiver can rule out certain state(s) with full confidence. The proof of
this result is presented in Appendix 7.

Proposition 2 (Discontinuous sender utility). Suppose for signaling scheme π there exists a signal
s0 ∈ S such that π(s0|ω) > 0 for every state ω ∈ Ω. Then the sender’s expected utility Uπ(µ) as a
function of the receiver’s prior belief µ is generally discontinuous in the following sense: for any µ0,
if u and v are sampled from any continuous distribution over utility values, then Uπ(µ) is discontin-
uous in µ ∈ ∆(Ω) with probability 1. This holds even if the sender utility u(a, ω) is independent of ω.

This discontinuity also implies that the sender’s utility is highly sensitive to errors in the belief
oracle. Suppose with access to an imperfect oracle ℓε, the optimal framing ĉ happens to induce a
belief µ̂ such that Uπ(·) was discontinuous at µ̂. Then if this framing is deployed, even though the
true induced prior µ∗ is within distance ε to µ̂ (i.e., |µ∗− µ̂| ≤ ε), the discontinuity means that the
realized utility can be arbitrarily far from the utility achieved under the imperfect oracle, regardless
of how small ε is. In particular, there does not exist a scalar λ such that ||Uπ(µ̂)− Uπ(µ

∗)|| ≤ λε.
We next show that this discontinuity also makes finding the optimal c computationally challenging,
even with a perfect oracle.

3.2 Computing the Optimal Framing

3.2.1 Discrete Framing Space

How can we find the optimal framing for a given instance. For any framing c and given signaling π
and belief oracle ℓ, the corresponding sender utility can be computed in time poly(|S|, |A|, |Ω|): use
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the belief oracle to determine the induced belief µc and then for each signal s ∈ S, the receiver’s best
response a∗c,s can be calculated as in Eq. (1), and then the corresponding sender utility as in Eq. (2).
When the framing space is discrete, this yields a simple enumeration algorithm to determine the
optimal framing: enumerate all |C| possible framings for the given problem instance, and choose the
one with the highest utility. This terminates in |C| · poly(|S|, |A|, |Ω|) time and is only reasonable
when the framing space is small. In our running examples, where framing encompasses contextually
relevant natural language expressions, this is unlikely to be the case. This begs the question: are
there algorithms that scale more gracefully in |C|, while preserving the polynomial dependence on
the other instance parameters (Ω, A, and S)?

3.2.2 Continuous Framing Space

To improve the dependency on |C|, we need to leverage additional structure in the framing space
(i.e. how framings relate to the induced beliefs). By considering the continuous framing space
where any belief in some convex subset B ⊆ ∆(Ω) is inducible, we can leverage this structure.
Indeed, in the most optimistic case, the sender can use framing to induce any belief in the simplex:
B = ∆(Ω). This means that the framing space C is no longer a parameter, and the instance size is
completely defined in terms of (Ω, A, and S). Unfortunately, we show that even in the optimistic
setting of B = ∆(Ω), selecting the optimal framing is NP-Hard (in the parameter |Ω|). Since the
sender utility given any belief can be efficiently computed (as discussed above), we formally prove
hardness of an algorithm that receives as input the instance parameters (u, v, µ0, π) and must return
the sender utility under an optimal induced belief µ∗

c . This can be formally stated as follows:

maximize
µc∈B=∆(Ω)

Uπ(µc) = maximize
µc∈B=∆(Ω)

∑
s

∑
ω

µ0(ω)π(s|ω)u(a∗(µc, s), ω)

s.t. a∗(µc, s) = argmax
a∈A

∑
ω′

µc(ω
′)π(s|ω′)v(a, ω′)

Computing the optimal objective value of this optimization problem is NP-Hard. We reduce this
from the Bayesian Stackelberg game where a leader faces a follower of unknown type. Conitzer and
Sandholm [6] formally show the following:

Lemma 1 (Conitzer and Sandholm [6]). The Bayesian Stackelberg Game (BSG) consists of a leader
with action space Aℓ and a follower of unknown type θ (from known distribution P (θ) ∈ ∆(|Θ|))
with action space Af . With leader utility uℓ(aℓ, af ) and type-dependent follower utility uθf (aℓ, af ),
the leader must commit to a mixed strategy x(aℓ), noting that the receiver will best respond. The
leader’s optimal utility is given by:

maximize
x∈∆(Aℓ)

∑
θ

P (θ)
∑
aℓ

x(aℓ)uℓ(aℓ, a
∗
f (θ, x))

s.t. a∗f (θ, x) = argmax
af∈Af

∑
aℓ

x(aℓ)u
θ
f (aℓ, af )

It is NP-Hard to compute this optimal leader utility even when the follower’s action space is binary.

We show that any BSG can be cast into an optimal framing-only instance I with |Ω| = |Aℓ|+
|Θ|+1 states, A = |Θ||Af |+2 actions, |S| = |Θ| signals, and a continuous framing space C = ∆(Ω).
The proof is technical and formally given in Appendix 7; but we sketch the high-level intuition
below.

8



Theorem 1. For a framing-only instance I = (µ0, u, v, π) with continuous framing-induced belief
space B = ∆(Ω), it is NP-Hard to select the optimal framing belief µ∗

c . Indeed it is NP-Hard to
solve this even with an additive approximation error.

Proof Sketch. We create a state for each leader action, ωaℓ , and each follower type ωθ. We create
receiver actions for each binary action a follower of a type θ can take - i.e. aθi for all θ. When the
receiver sees a signal sθ (which is proxying type θ in BS), we want them to only consider actions
aθ0, a

θ
1, which should directly correspond to follower θ’s utility in taking action 0 or 1 in the BSG

instance. Since receiver utility in persuasion does not explicitly depend on type θ, the states ωθ are
used to achieve this effect. The receiver is heavily penalized for taking an action aθ

′
∗ at state ωθ.

We carefully select the sender utilities and add additional dummy states and actions to ensure that
(1) the persuasion sender places sufficient weight on the optimal µc states corresponding to ωθ to
ensure the receiver takes this type-consistent action, and (2) the persuasion objective captures the
type-dependent Bayesian Stackelberg objective. The inapproximability stems from a more careful
analysis of the original result of Conitzer and Sandholm [6].

4 Joint Framing-Signaling Strategy

We now consider the joint strategy setting wherein the sender can choose both elements of the
information design tuple. Formally, given an instance I = (µ0, u, v), the sender may select a
framing c ∈ C and a signaling scheme π. This can be viewed as a generalization of the standard
Bayesian Persuasion model, which only designs the scheme π. As in Section 3, there is no benefit in
randomizing over framings since Proposition 1 shows that for any signaling π, and thus the optimal
scheme π∗, randomization can never increase utility.

The ability to choose π offers the sender more freedom as compared to the framing-only strategy.
Indeed, a key limitation of that restricted strategy was an inability to apply a revelation-principle
style argument: for a fixed π, the mapping from receiver action to observed signal could change
depending on the receiver’s belief. It turns out that the revelation principle is restored in the design
of joint strategy, as we show below (proof in Appendix 8).

Proposition 3. When jointly optimizing over the information design tuple (c ∈ C, π : Ω → ∆(S)),
it suffices to consider signaling scheme π with a direct signal space, i.e., S = A.

This allows us to restrict our attention to such direct signaling schemes without loss of generality.
As in the preceding section, we focus on two key questions: (1) the effect of framing on the sender’s
utility and the sensitivity of this utility to errors in the belief oracle, and (2) the computability
of the optimal joint strategy with this oracle. Our results here highlight key differences from the
framing-only strategy.

4.1 The Effect of Framing on Sender Utility

Given that signaling is part of the strategy space, for any induced receiver belief µ, the sender can
use the optimal signaling scheme to accompany this belief. We denote this signaling scheme as π∗

µ
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and the resulting sender utility as U∗(µ). Due to Proposition 3, U∗(µ) can be efficiently computed
for any receiver belief µ using the following linear program (with the constraints referred to as the
incentive-compatibility or IC constraints):

U∗(µ) = maximize
π:Ω→∆(A)

∑
ω

∑
a

µ0(ω)π(a|ω)u(a, ω) (3)

s.t. ∀a, a′ :
∑
ω

µ(ω)π(a|ω)
[
v(a, ω)− v(a′, ω)

]
≥ 0. (4)

We can compare this function U∗(µ), which tracks the sender utility as a function of the receiver
belief under the corresponding optimal scheme, to the earlier function Uπ(µ) which tracked the same
quantity but with a fixed scheme π. Proposition 2 illustrated that Uπ(µ) is generally discontinuous,
allowing arbitrary changes in sender utility, even when framing only slightly changes the receiver’s
belief. However, when π is part of the strategy space and can be optimized, this is no longer the
case. Theorem 2 below shows that U∗(µ) is continuous within the interior of the simplex (proof
in Appendix 8). The result implies that if two different framings lead to slightly different beliefs,
then the corresponding sender utility also changes slightly.

Theorem 2. The sender’s utility U∗(µ), as defined in Eq. (3), is a locally Lipschitz continuous
function of the induced receiver belief µ within the interior of the belief simplex ∆(Ω).

Proof Sketch. The high-level idea is a sensitivity analysis for the linear program defined in (3)-
(4), where we want to show that the optimal objective U∗(µ) of the linear program cannot change
a lot when the parameter µ is slightly perturbed. In particular, let π∗

µ be an optimal solution of
the linear program when the parameter is µ. We modify π∗

µ slightly to be another solution π̃ that
satisfies the IC constraint (4) simultaneously for all parameters µ′ that are close to µ (in particular,
∥µ′ − µ∥1 ≤ ε). Such modification is possible due to the conditions that (1) every action a ∈ A of
the receiver is inducible by some belief; (2) µ(ω) > 0 for every ω ∈ Ω. Since the modification is
small, the utility of π̃ is only slightly worse than the utility of π∗

µ, which is U∗(µ). So, the optimal
objective for µ′, U∗(µ′), cannot be too much worse than U∗(µ). See details in Appendix 8.2.

What does this imply about the loss in utility due to a noisy belief oracle ℓε? Let (µ∗, π∗
µ∗)

denote the optimal strategy under the perfect oracle, with framing c∗ inducing µ∗ = ℓ(c∗). Choosing
c∗ under the noisy oracle ℓε will result in a perceived belief ℓε(c

∗) in the ball Bε(µ
∗) = {µ ∈ ∆(Ω) :

∥µ − µ∗∥ ≤ ε}, and due to Theorem 2, the perceived utility will be within O(ε) of the optimal:
|U∗(ℓε(c

∗))−U∗(µ∗)| ≤ O(ε). Then, by choosing the optimal framing ĉ ∈ C according to the noisy
oracle, with corresponding belief ℓε(ĉ) = µ̂, we obtain U∗(µ̂) ≥ U∗(ℓε(c

∗)) ≥ U∗(µ∗)−O(ε). When
using framing ĉ and signaling scheme π∗

µ̂ in practice, however, the actual belief induced by ĉ is
µ′ = ℓ(c) ̸= µ̂ satisfying ||µ′ − µ̂|| ≤ ε. The signaling scheme π∗

µ̂ is IC for µ̂ but not necessarily IC
for µ′. One way to resolve this non-IC issue is to modify the signaling scheme π∗

µ̂ slightly to make
it IC for µ′; this is feasible because µ′ is close to µ̂, but will cause an additional O(ε) loss to the
sender’s utility. Another way is to relax the IC notion, as follows.
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We introduce the notion of ε-approximate incentive com-
patibility (ε-IC). Formally, an action a is ε-IC for
a receiver with belief µ if for all actions a′ ∈ A,∑

ω µ(ω)π(a|ω)[v(a, ω) − v(a′, ω)] ≥ −ε. In maintaining a
fixed signaling π∗

µ̂ and shifting the induced belief from µ̂ to
µ′, it is evident that the IC constraints are violated by at
most ε, and the utility perturbed at most ε as well. We
visualize this on the left, and by the triangle inequality, the
following is evident:

Corollary 1. The realized utility in facing a ε-IC receiver under a joint optimal strategy based on
an ℓε noisy oracle is at most O(ε) away from the optimal utility for an exactly IC receiver.

The notion of ε-IC will feature prominently throughout the results in this section. As mentioned
above, it enables more tractable computational and characterization results compared to the earlier
section on context-only optimization. It is important to note that this relaxation is conceptually
reasonable in direct signaling schemes where signals can be interpreted as action recommendations.
While it is without loss of generality to consider such schemes when jointly optimizing framing and
signaling (Proposition 3), when only optimizing framing as in Section 3, this is not true, making
ε-IC ill-defined in that setting.

4.2 Computing the Optimal Joint Strategy

4.2.1 Discrete Framing Space:

In the discrete framing space, for any framing c with induced belief µc, we can compute the optimal
signaling π∗

µc
and its resulting utility U∗(µc) using the linear program specified in (3), which is

computable in poly(|Ω|, |A|). As in Section 3, this yields a simple enumeration algorithm to find
the optimal framing that runs in time |C| · poly(|Ω|, |A|). While this approach may be similarly
impractical for large |C|, unlike Section 3, the function U∗(µ) here is Lipschitz continuous in the
interior of the simplex. Thus, from a practical perspective, it may be attractive to enumerate over
a smaller set of framings that yield sufficiently different induced beliefs and obtain an efficient
approximation. The exact mechanics of this depend on the properties of the mapping function
ℓ and the corresponding density of the belief space B. Studying the continuous framing space
provides more insights into these questions.

4.2.2 Continuous Framing Space:

Recall that in the continuous framing space model, we directly consider inducing a belief within
some convex region B ∈ ∆(Ω). The optimization problem can then be expressed as maximizing a
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linear objective subject to bi-linear constraints:

maximize
µ∈B

U∗(µ) = maximize
µ∈B, π:Ω→∆(A)

∑
ω

∑
a

µ0(ω)π(a|ω)u(a, ω) (5)

s.t. ∀ a, a′ ∈ A×A :
∑
ω

µ(ω)π(a|ω)
[
v(a, ω)− v(a′, ω)

]
≥ 0.

Bi-linear optimization problems do not generally admit efficient solutions. To get a sense of the
challenge for our specific problem, we observe that U∗(µ) is neither concave nor quasi-concave even
for simple instances. We illustrate such an example below.

Example 1. Consider an instance with 2 states Ω =
{0, 1} and 3 actions {0, 1, 2}, with the following util-
ity matrices for the sender and the receiver (rows are
actions, columns are states):

u =

 0 1
1 0
0.2 0.2

 , v =

0.65 0.15
0.60 0.30
0.10 0.50

 .

The sender has prior µ0 = (13 ,
2
3) for the two states.

We use the probability of state 0 to denote the receiver’s
belief µ ∈ [0, 1]. The sender’s optimal utility function
U∗(µ) is plotted to the right. It is continuous but not
convex, concave, or quasi-concave.

This suggests that the underlying problem may be hard in the general case. Indeed, we saw
that the analogous problem in the framing-only strategy setting is NP-Hard to approximate even
when the induced belief space covers the entire simplex. Results in the joint optimization case,
however, are not as pessimistic, mirroring other observations from this section. Specifically, under
the same condition of inducible belief space B equaling ∆(Ω), there exists a poly-time algorithm
achieving

(
1− 1

|Ω|
)
approximation when the receiver is ε-IC. Further, for state-independent sender

utility (i.e. sender utility only depends on the receiver action as in the judge-lawyer example), the
exact optimal for an exactly IC receiver can be computed in poly-time. We formalize these results
below:

Theorem 3. For a joint strategy instance I = (µ0, u, v), and framing-induced belief space B =
∆(Ω), the following hold:

• A
(
1− 1

|Ω|
)
multiplicative-approximation of the optimal joint strategy utility can be computed

in poly-time;

• If the sender utility is state-independent, i.e., ∀a,∀(ω, ω′), u(ω, a) = u(ω′, a), then the exact
optimal strategy can be computed in poly-time.

Proof. Beginning with the first claim, recall that we consider sender utilities to be positive (this is
without loss of generality since the sender utility is linear in u(a, ω), allowing us to normalize as
needed). Let au(ω) = argmaxa u(a, ω) and av(ω) = argmaxa v(a, ω) denote the optimal action for
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the sender and receiver at state ω respectively. Further, let ωmin = argminω µ0(ω)u(a
u(ω), ω) - it

captures the “least” important state for the sender assuming sender-optimal action at each state.

Since B = ∆(Ω), consider using framing to induce a belief µc(ωmin) = 1 − ε and ε
n−1 for all

other states; let the signaling scheme π deterministically recommend the received optimal action
at ωmin and sender optimal actions at all other states. In other words:

π(av(ωmin)|ωmin) = 1 and ∀ω ̸= ωmin : π(au(ω)|ω) = 1

Since the sender’s utility is non-negative, if the receiver follows the recommended actions outlined
by this scheme, the sender is guaranteed to achieve at least the following utility:∑

ω ̸=ωmin

µ0(ωmin)u(a
u(ωmin), ωmin) ≥ umax − 1

|Ω|umax =
(
1− 1

|Ω|

)
umax

where we note that the maximum possible utility achievable by the sender is umax =
∑

ω µ0(ω)u(a
u(ω), ω)

and by the pigeonhole principle, µ0(ωmin)u(a
u(ωmin), ωmin) =

1
|Ω|umax. We now show that follow-

ing the recommended actions is ε-IC for the receiver. Indeed, for a recommended action a and any
other action a′, the incentive-compatibility expression for this pair under the scheme is:

(1− ε)π(a|ωmin)[v(a, ωmin)− v(a, ωmin)] +
∑

ω ̸=ωmin

ε

n− 1
π(a|ω)[v(a, ωmin)− v(a, ωmin)]

When the receiver gets recommended action av(ωmin), this expression becomes at least (1 − ε)
[v(av(ωmin), ωmin) − v(a′, ωmin)] − ε ≥ −ε since at state ωmin, action av(ωmin) is optimal for the
receiver. Conversely, if the receiver is recommended some action a ̸= av(ωmin), then the expression
is:

∑
ω ̸=ωmin

ε
n−1π(a|ω)[v(a, ω)− v(a′, ω)] ≥ −ε since the utilities are bounded to [0, 1].

For the second claim, we can make use of an additional assumption: the sender utility is state-
independent. This means that their utility is maximized if the receiver takes some action au at all
possible states. We also recall from Section 2 that any action is inducible in the receiver - that
is, for any action a ∈ A, there exists some belief µa wherein taking that action is optimal for the
receiver. For the sender optimal action au, let µau denote the belief where it is optimal for the
receiver. Indeed, µau can be computed using the following set of linear constraints:

∀a′ ∈ A :
∑
ω

µ(ω)[v(au, ω)− v(a′, ω)] ≥ 0.

Since B = ∆(Ω), choose the framing c that induce belief µau . We accompany this framing with
an uninformative signaling scheme π. Such a scheme reveals no information about the realized
state. For example, for a given action a1, π(a1|ω) = 1 for all ω is an uninformative scheme. Using
this joint strategy means the receiver belief is always µau , where their best-response is to take the
sender optimal action au. This is thus an optimal strategy.

These results rely on the inducible belief space being the entire simplex. We may also be
interested in results that hold when B is any convex subset of the belief simplex. We now show that
a Quasi-Polynomial Time Approximate Scheme (QPTAS) exists for this general problem (Theorem
4). Importantly, the algorithm computes a joint strategy with at least as much utility as the optimal
exact-IC solution, but with ε-IC guarantees. While we do not formally prove hardness for the exact
problem (we regard it as an important open direction), the existence of a QPTAS suggests that
the general version of this problem is easier than the framing-only variant since Independent-Set,
which has no known QPTAS, reduces to the latter.
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Theorem 4. For any instance I and any ε > 0, there exists a poly(|Ω|
log |A|

ε2 )-time algorithm that
can compute an ε-IC joint strategy with at least as much utility as the optimal joint strategy under
exact IC.

Proof. Let µ∗ ∈ B and π∗ be the optimal induced belief and signaling scheme for this instance under
exact incentive compatibility constraints. If we were to draw n samples from µ∗, the resulting
empirical distribution, denoted µ̂, would be an n-uniform distribution - i.e. each entry of µ̂ is
a multiple of 1

n . Because E
[∑

ω µ̂(ω)π∗(a|ω)[v(a, ω) − v(a′, ω)]
]
=

∑
ω µ∗(ω)π∗(a|ω)[v(a, ω) −

v(a′, ω)] ≥ 0, by Hoeffding’s inequality, we have

∀a, a′ ∈ A×A, Pr
[∑

ω

µ̂(ω)π∗(a|ω)
[
v(a, ω)− v(a′, ω)

]
< −ε

]
≤ exp

(
−2nε2

)
.

Taking a union bound over all |A|2 pairs (a, a′), we have
∑

ω µ̂(ω)π∗(a|ω)
[
v(a, ω)− v(a′, ω)

]
≥ −ε

satisfied for all pairs of (a, a′) with probability at least 1−|A|2 exp
(
−2nε2

)
, hence µ̂ in conjunction

with π∗ satisfies ε-IC constraints. Pick n = log |A|
ε2

. The probability 1 − |A|2 exp
(
−2nε2

)
will

be positive. This means that there must exist an n-uniform distribution µ̂ satisfying ε-IC in
conjunction with π∗. Note that the sender’s utility under the (µ̂, π∗) strategy is the same as the
(µ∗, π∗) strategy because the sender’s utility only depends on π∗.

Now consider the following algorithm: enumerate over all n-uniform distributions in B, and for
each, solve the optimal signaling linear program (3)-(4) but with a relaxed ε-IC constraint. Return
the solution with the best sender utility. This solution must be weakly better than the ε-IC solution
(µ̂, π∗) mentioned above, which is therefore weakly better than the optimal solution (µ∗, π∗).

We then consider the runtime of the algorithm. The runtime depends on the number of n-
uniform distributions and the time to check whether each distribution is included within the in-
ducible set B. Since B is convex, checking this inclusion can be done in poly-time. As for the
number of n-uniform distributions, since the probability of each state ω can take on n possi-
ble values {0, 1

n ,
2
n , . . . , 1} and the sum must equal 1, it is equivalent to placing n elements into

|Ω| distinct buckets. Thus, the number of possible distributions is at most
(n+|Ω|−1

|Ω|−1

)
. For a

fixed |Ω| and n growing large, this quantity is a polynomial in n of degree |Ω| − 1. It is thus
clearly upper bounded by O(|Ω|n). Similarily, for a fixed n and as |Ω| grows large, observe that(n+|Ω|−1

|Ω|−1

)
=

(
n+|Ω|−1

n

)
≈ |Ω|n

n! = O(|Ω|n), where we use Stirling’s approximation. Thus, the runtime

of this algorithm is bounded by poly ·O(|Ω|n) = poly(|Ω|
log |A|

ε2 ).

5 Empirical Studies with Large Language Models

Two key aspects of our theoretical studies of framing and signaling are worth noting: (a) our
model rests on direct access to the framing-to-belief mapping ℓ : c → µc; (b) our theoretical studies
highlight the computational challenges of optimizing over the framing space C, even with access
to such an oracle. In this section, we turn to empirical studies and harness the power of Large
Language Models (LLMs) to address these issues. Specifically, we empirically show that LLMs not
only can be used to approximately uncover the mapping ℓ, but also can help to search over the
framing space efficiently to find good framing candidates.

14



Figure 1: Diagram of our proposed framework for optimizing framing and signaling. It includes
LLMs searching the framing space, verifying it for correctness, and generating framing-induced
beliefs. It also includes poly-time analytical solvers to compute optimal signaling for a given belief.

5.1 Methodology

We present our proposed approach for optimizing in the framing space, either by itself or jointly
with signaling, in Figure 1. LLMs perform two crucial roles here: generating framing and refining
them based on feedback, and estimating the belief induced by a receiver under any framing. These
are complemented with an additional LLM module that verifies the soundness of any framing, and
analytical solvers that compute the sender utility given a quantitative receiver belief. We discuss
these roles and the overall methodology below:

Instance Information: Information relevant for optimal framing and signaling is not just
the quantitative parameters like (µ0, u, v) but also qualitative descriptions about the setting, the
receiver and sender, their preferences, and any related meta information. This is because the belief
induced by framing is not an explicit mathematical process. Rather, it captures how a string
describing some aspect of the instance will be perceived by a given receiver, factoring in social
norms, environmental, and personal factors.

Estimating the belief oracle ℓ: A key responsibility of LLMs in our flow is estimating how
a framing would influence a given receiver’s belief. In settings where decision-making has been
delegated to LLMs, this involves simply querying the LLM and the approximation is essentially
exact. When the underlying decision-maker is a human agent, a nascent line of economics research
in economics argues that LLMs can approximate this agent in various settings [18, 22], including as
a statistical proxy to model beliefs of a human agent [25]. This approach involves endowing the LLM
with information about the agent it is modeling - in our case, this is relevant information about
the receiver, including demographics, preferences, and backgrounds. Second, what we precisely
require from the LLM is a quantitative value on the receiver’s belief. This can be gathered by
either: asking the LLM to generate one of |Ω| tokens corresponding to each state and recording the
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log probabilities, or asking it to directly return numerical probabilities. Cruz et al. [8] show that
on distributional (non-factual) questions, the first approach leads to accurate (correctly returns
the most-likely outcome) but highly-uncalibrated answers (the log-probabilities are far from the
true distribution). In contrast, they show that eliciting numerical probabilities in a chat-style
prompt results in better outcomes. We use this in our framework and comment on experimental
observations about this approach in Section 5.3.

Validation of a framing: Using LLMs to generate framing risks hallucinations; in our context,
this would be any information in the framing that is incorrect or inconsistent. For example, if
asked to design a framing for a Nike basketball shoe, the LLM generating a blurb highlighting
their collaboration with a non-existent NBA team or player would be incorrect. In general, the
soundness may be more nuanced than a binary outcome; the framing could take certain liberties
that, while not blatantly incorrect, may be undesired. As such, we propose using an LLM to score
soundness with a real value between 0 and 1. This LLM module is given in-context information
about the instance along with the generated framing. To calibrate the scores, we specify a few
labeled (framing, score) examples in the prompt since few-shot approaches have been successful
in the literature [21, 4]. The correctness score is part of the feedback to the framing generating
LLM.

Computing Sender Utility: When the strategy space is framing-only, the signaling scheme is
given, and computing the sender utility for a framing-induced belief µc is just carrying out the
algebra in equations 1 and 2. In the case of a joint strategy space, computing the optimal signaling
scheme for a given receiver belief can be solved by the linear program specified in Equation 3. In
either case, poly-time analytical approaches can compute the sender’s utility given a belief µc.

Generating Framing: Building on the success of in-context learning via ”textual gradients” [28],
we propose an LLM generate a framing based on instance-relevant information and a language-
specified task, and iteratively refine it through feedback. The relevant information includes profiles
of the receiver, their preferences, and those of the sender. We find it sufficient to present this
information qualitatively. The task description defines key parameters for the framing, such as
word count and style, while also outlining the refinement process and feedback. For each generated
framing, the induced prior is estimated and then used to compute the corresponding sender util-
ity; this is scaled by the soundness score. This final quantitative score is supplemented with the
reasoning behind the generated belief and soundness score to construct the feedback string. The
LLM’s context is updated with this feedback, prompting it to generate a refined framing.

5.2 Searching the Framing Space: A Real-Estate Case Study

To demonstrate our proposed optimization framework, we consider the following scenario: A realtor
(sender) works with a potential home-buyer (receiver) and may show them houses with various
features (the world states). The realtor observes the true state of the property, and signals the
buyer through an action recommendation (buy or not buy). The buyer observes some description
of the realtor (the framing) and the recommendation signal. Both of these influence their belief
over about a property this realtor would show/specialize in. The buyer takes their optimal action
based on this belief and their utility. Numerical and prompting details about the instance are in
Appendix 9; but in general, the realtor wants the buyer to purchase expensive homes and not cheap
ones; the buyer wants cheap homes that fit their desired criteria.
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How should the realtor pitch themselves to the potential buyer? How does this change depending
on the buyer? This relates to finding the optimal framing for a given instance. More precisely,
we consider two instances of this problem, corresponding to two potential buyers: “Henry” and
“Lilly”. Both instances share the same realtor, “Jeremy”, and the instance description contains
all relevant information about Jeremy, alongside profiles of Henry and Lilly. See below for the
descriptions contained in the instance information:

• Realtor Jeremy: Jeremy Hammond is Male and 42. Worked with the our firm for 2 years,
Worked previously as a realtor for 6 years, and a contractor before that. Lives with his wife
and 3 kids and a dog and a cat in Downtown Boston. Hobbies include playing the drums,
spending time with kids, hiking, and backyard gardening. Active member of his Home Ownerś
Association.

• Buyer Henry: Henry lives in Boston and is an avid outdoors person who enjoys hiking and
being in nature. For him, a “good” house has low maintenance, affords easy access to trails,
biking, running etc, and far from hustle of the main city. He is single and lives by himself - so
he is indifferent to school districts, etc. A bad house is generally one in a very family-oriented
neighborhood with stingy HOA rules, maintenance, lawn care expectations and so on. For him,
cheap is anything less that costs less $500,000, with expensive being houses above this.

• Buyer Lilly: Lilly is moving to Boston with her husband, 3 young kids and a dog. She and her
family are looking for a spacious house in the suburbs with good schools for their kids, a nice
yard for her dog, and friendly community-focused neighbours. This is what constitutes a “good”
house for her. Smaller homes, those in not-so-great school zones, or those in busy and loud
areas of the city near Downtown are “bad” in her eyes. For them, anything costing less that
$650,000 is considerd cheap, with those above considered expensive.

A good framing is a personalized description of Jeremy for the pertinent buyer that induces a
favourable (to the realtor) belief about the types of houses Jeremy could show. For both buyers,
there are four possible states, corresponding to the product of (good, bad) and (cheap, expensive).
To illustrate the full range of our framework, we consider the joint optimization setting where both
the framing and signaling scheme can be optimized. For this experiment, we use GPT-4o-mini [27]
for the LLM portions of the framework, and SciPy [30] for the analytical parts. The results for
each instance are presented below. We compare the best framing found by our framework with
the following baselines: no framing wherein the receiver and sender have the same prior, using
the default profile of Jeremy contained in the instance description as the framing, and the optimal
joint strategy when any belief in ∆(Ω) can be induced (i.e Equation 5 with B = ∆(Ω)). This last
baseline is computed analytically.

We note that in both instances, the LLM generated framing produced a higher utility than
using the default description and the standard persuasion baseline where both parties share the
same utility. In analyzing the generated responses, we observe that these LLM framing selectively
highlight aspects of Jeremy’s profile that may appeal to each buyer, while omitting that which does
not. For example, the framing for Henry emphasizes Jeremy’s love of the outdoors and pitches his
contractor background as helpful in finding low-maintenance properties. The framing for Lilly on
the other hand, frames this background as helpful in finding spacious properties and highlights him
being a dog-owner, just like Lilly. Interestingly, the utility generated by the optimal framing for
Henry comes close to the theoretical optimal when any belief is inducible.
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Framing for the “Henry” Instance Utility

No framing - receiver prior equal to sender prior 0.28

Realtor Jeremy Profile from the Instance Description 0.30

Best LLM Framing: Meet Jeremy Hammond, a dedicated realtor with over
8 years of experience, specializing in finding the perfect homes for outdoor
enthusiasts like you. Living in Downtown Boston, Jeremy understands the
balance between city life and access to nature. With a background as a con-
tractor, he ensures that every property meets your low-maintenance needs.
When he’s not helping clients, you can find him hiking local trails or en-
joying his backyard garden. Trust Jeremy to help you discover a home that
complements your active lifestyle while staying within your budget.

0.40

Analytical Upper Bound (Optimal Joint Strategy when B = ∆(Ω)) 0.41

Framing for the “Lilly” Instance Utility

No framing - receiver prior equal to sender prior 0.33

Realtor Jeremy Profile from the Instance Description 0.33

Best LLM Framing: Introducing Jeremy Hammond, a seasoned realtor with
8 years dedicated to helping families find their dream homes in Boston’s
suburbs. With a rich background as a contractor, Jeremy excels in identify-
ing spacious, family-friendly properties with excellent school districts—just
what you need for your kids. As a fellow dog owner, he knows the im-
portance of a great yard and a welcoming neighborhood. Trust Jeremy to
leverage his local expertise and commitment to family values as he guides
you to affordable yet quality homes that fit your family’s lifestyle.

0.42

Analytical Upper Bound (Optimal Joint Strategy when B = ∆(Ω)) 0.46

5.3 Estimating Receiver Beliefs under Different Framing: A Real-Estate Case
Study

The second key role that LLMs play in our framework is quantifying the receiver’s belief for a given
framing - indeed this is instrumental to results presented above. When decision making has been
proxied to LLMs as argued in setting like [16], the belief LLMs generate for a given framing can
essentially be considered ground truth. When the decision-maker is human, however, we use LLMs
to approximate this agent. For both scenarios, it is instructive to question the consistency of these
LLM beliefs. We consider consistency along two angles: variance and rationality. Variance refers
to how different the beliefs returned by the LLM are across multiple runs4. Rationality refers to
whether when asked to make decisions, the resulting action is consistent with the belief.

4Although variance can be made 0 by using a low temperature, this can result in less effective outputs. We use
the OpenAI default temperature of 0.7 in all our experiments.

18



(a) Belief distribution for Henry (b) Belief distribution for Lilly
Figure 2: Mean (across 20 runs) LLM generated beliefs with 90% confidence intervals at default
temperature

In Figure 3, we plot the belief distributions for both the Henry and Lilly instances. It contains
beliefs corresponding to both the initial realtor description defined in the instance (denoted “base
framing”), and the optimal one generated by the LLM. We note that while there is variance between
the runs, the beliefs generated by the LLM are reasonably consistent. These plots also highlight the
effect of optimal framing in increasing the belief in “good+cheap” state and decreasing the belief
in “bad+expensive” state.

To verify the “rationality” of these beliefs we consider the following. First, we prompt the
LLM with the receiver’s utility and the optimal realtor framing and ask what action the receiver
would take given just this information. Note that this is before the LLM was asked to generate
any beliefs. This reflects the initial instinct of the LLM and we denote it as the pre-belief action.
Second, we consider the LLM after generating the belief as per our framework. We maintain the
requisite prompts and the generated belief in-context, and give the LLM the receiver utility and
ask it to make a decision. This post-belief action, is compared against the optimal decision for each
generated belief (denoted by “% actions are rational”). As we see in the presented results below,
post-belief decisions are always consistent with the optimal action for each prior. The instinctive
pre-belief decisions are slightly less so for Henry, but perfectly matches for Lilly.

Instance Pre-Belief Action Post-Belief Action % Actions that are Rational

Henry 17 “buy” and 3 “not buy” 20 “buy” and 0 “not buy” 100%

Lilly 20 “buys” and 0 “not buy” 20 “buy” and 0 “not buy” 100%

Table 1: Results of 20 independent runs of the consistency experiment for the optimal framing
generated for each instance.
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6 Discussion

This paper connects the rich literature on Bayesian signaling with mature ideas from behavioral
economics and psychology which posit that the linguistic and contextual framing of information
plays an important role in shaping the perceptions and beliefs of decision-makers. Traditionally,
costly methods such as focus groups were required to explore the link between framing and belief
formation. However, the emergence of LLMs provides a more efficient, systematic, and cost-effective
alternative. Our work experimentally demonstrates this approach and taking this belief-generating
process as a given, we further investigate the optimization properties of this problem. Our the-
oretical results demonstrate that while slight changes in framing can significantly improve sender
utility in many settings, determining the optimal framing, with or without signaling, is a challeng-
ing problem. Here too, LLMs offer respite. We propose an optimization framework that uses LLMs
to efficiently search the framing space, leveraging their ability to understand linguistic structure
and learn in-context.

This work opens many interesting directions for future research. On the theoretical side, it
remains open to determine the computational complexity of the framing-signaling joint optimization
problem (we conjecture this to be NP-Hard). Empirically, more work is needed to better understand
how LLM-generated beliefs match that of humans. Or how satisfied humans are with LLM-proxied
decision-making in settings relevant to signaling. Answering these questions may require careful
and nuanced human-subject experiments. Lastly, persuasion is but one model and it would be
instructive to combine the rich perspective of framing with other important signaling models such
as cheap-talk [7, 14] or mediation [24].
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7 Section 3 Appendix

7.1 Proof of Proposition 1

Proof. Let pC ∈ ∆(C) denote a distribution over the framing space. Consider the sender’s utility
under this distribution (we consider the framing space to be discrete here, but the result immediately
holds for continuous settings too by replacing

∑
c with

∫
c):

Ec,ω,s[u(a
∗
c,s, ω)] =

∑
ω

µ0(ω)
∑
s∈S

π(s|ω)
∑
c∈C

pC(c)u(a
∗
c,s, ω)

=
∑
c∈C

pC(c)
∑
ω

µ0(ω)
∑
s∈S

π(s|ω)u(a∗c,s, ω)
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Let cmax = argmaxc∈C
∑

ω

∑
s µ0(ω)π(s|ω)u(a∗c,s, ω). Then it is clear that using this framing

upper-bounds the expected utility achieved from the randomized strategy. Formally:

Ec,ω,s[u(a
∗
c,s, ω)] ≤

∑
c∈C

pC(c)
∑
ω

∑
s

µ0(ω)π(s|ω)u(a∗cmax,s, ω) =
∑
ω

∑
s

µ0(ω)π(s|ω)u(a∗cmax,s, ω)

7.2 Proof of Proposition 2

Proof. Let (u, v) be a pair of utility functions sampled from some continuous distribution. Recall
that we consider receiver utility functions v such that for every possible action, there is some belief
in ∆(Ω) such that this action is strictly optimal (inducible). Consider any pair of actions a1, a2 ∈ A.
Since a1 is strictly inducible, there must be some state ω1 ∈ Ω under which v(a1, ω1) > v(a2, ω1).
Since a2 is strictly inducible, there must be some state ω2 ∈ Ω under which v(a1, ω2) < v(a2, ω2).
This means that, if the receiver’s prior µ is deterministically on ω1, then we have∑

ω∈Ω
µ(ω)π(s0|ω)

(
v(a1, ω)− v(a2, ω)

)
> 0

since π(s0|ω1) > 0 by assumption. If the receiver’s prior µ is deterministically on ω2, then we have∑
ω∈Ω

µ(ω)π(s0|ω)
(
v(a1, ω)− v(a2, ω)

)
< 0

since π(s0|ω2) > 0 by assumption. Then, by the intermediate value theorem, there must exist a
prior belief µ̃ supported on {ω1, ω2} only, namely, µ̃ ∈ Bω1,ω2 = {µ ∈ ∆(Ω) | µ(ω1) > 0, µ(ω2) >
0, ∀ω /∈ {ω1, ω2}, µ(ω) = 0}, and an action a′ ̸= a1 such that the receiver is indifferent between a1
and a′ upon receiving signal s0:

0 =
∑
ω∈Ω

µ̃(ω)π(s0|ω)
(
v(a1, ω)− v(a′, ω)

)
= µ̃(ω1)π(s0|ω1)

(
v(a1, ω1)− v(a′, ω1)

)
+ µ̃(ω2)π(s0|ω2)

(
v(a1, ω2)− v(a′, ω2)

)
and moreover a′ and a1 are both weakly better than any other actions:

a′, a1 ∈ argmax
a∈A

∑
ω∈Ω

µ̃(ω)π(s0|ω)v(a, ω).

Note that a′ may or may not be equal to a2. Next, consider the receiver’s best-response action ã∗s
upon receiving any signal s ̸= s0, under signaling scheme π and prior µ̃:

ã∗s ∈ argmax
a∈A

∑
ω∈Ω

µ̃(ω)π(s|ω)v(a, ω).

Because v is randomly sampled from a continuous distribution, and µ̃ already made the receiver
indifferent between a′ and a1 at signal s0, the probability that µ̃ will make the receiver indifferent
between any two actions under signal s is 0. So, ã∗s must be unique for any s ̸= s0, with strict
inequality ∑

ω∈Ω
µ̃(ω)π(s|ω)v(ã∗, ω) >

∑
ω∈Ω

µ̃(ω)π(s|ω)v(a, ω), ∀a ∈ A \ {ã∗s}.
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This means that, for sufficiently small ε > 0, the receiver’s best-response actions under the following
two prior beliefs

µ̃+ε = (µ̃(ω1) + ε, µ̃(ω2)− ε, 0, . . . , 0), µ̃−ε = (µ̃(ω1)− ε, µ̃(ω2) + ε, 0, . . . , 0)

will still be ã∗s, given signal s ̸= s0.

However, given signal s0, because the receiver is indifferent between a′ and a1 under prior µ̃,
the receiver will strictly prefer action a1 under prior µ̃+ε and strictly prefer action a′ under prior
µ̃−ε, for sufficiently small ε > 0. This means that the sender’s utilities under priors µ̃+ε and µ̃−ε

are

Uπ(µ̃
+ε) =

∑
ω∈Ω

µ0(ω)
( ∑

s∈S\{s0}

π(s|ω)u(ã∗s, ω) + π(s0|ω)u(a1, ω)
)

Uπ(µ̃
−ε) =

∑
ω∈Ω

µ0(ω)
( ∑

s∈S\{s0}

π(s|ω)u(ã∗s, ω) + π(s0|ω)u(a′, ω)
)
.

We see that

Uπ(µ̃
+ε)− Uπ(µ̃

−ε) =
∑
ω∈Ω

µ0(ω)π(s0|ω)
(
u(a1, ω)− u(a′, ω)

)
.

Because we assumed µ0(ω) > 0, π(s0|ω) > 0, ∀ω ∈ Ω, and the randomly sampled utility function
satisfies u(a1, ω) ̸= u(a′, ω) with probability 1, we have

Uπ(µ̃
+ε)− Uπ(µ̃

−ε) = C ̸= 0

for some constant C ̸= 0 independent of ε. This means that Uπ(µ) is not continuous at µ̃.

7.3 Proof of Theorem 1

Proof. We will show that finding the optimal utility in a specific class of Bayesian Stackelberg
games (BSG) can be reduced to our problem of computing the optimal sender utility by optimizing
only framing/receiver prior (OF). Conitzer and Sandholm [6] prove that the former problem is
NP-Hard. Specifically, it is hard to compute the optimal utility for the following class of BSG
problems, which they show is sufficient to ensure that the Independent Set problem can be reduced
to it.

• Follower has binary actions (a0, a1) with positive bounded utility: uθf (aℓ, af ) ∈ [0, vmax], where
vmax ≤ |Aℓ|.

• Follower always has utility 1 for a0. That is, ∀θ, aℓ, uθf (aℓ, a0) = 1.

• Leader utility is binary and does not depend on the leader’s action (only the follower): uℓ(af ) ∈
{0, 1}.

• The least probable type occurs with non-zero probability: minθ P (θ) ≜ Pmin ≥ 0.

For any given instance of the BSG with the above characteristics, denoted by IBS , with optimal
solution x∗ achieving optimal leader utility BS(IBS , x

∗), we will give a poly-time construction of
an OF problem instance I ′

OF whose optimal solution µ∗
c is such that OF(I ′

OF , µ
∗) = BS(IBS , x

∗).
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Hence if the OF problem can be efficiently solved, it would imply efficient solving of the class
of BSG problem described above, which is known to be NP-Hard. For a given instance IBS =
(Θ,Aℓ,Af , P (θ), uℓ, uf ), we first construct an intermediate instance IOF = (Ω, C,A, S, µ0, u, v, π)
as follows:

• The state space for IOF is: Ω = {ωaℓ}aℓ∈Aℓ
∪ {ωθ}∀θ∈Θ ∪ ω̃

• The receiver’s action space is: A = {aθ0}∀θ∈Θ ∪ {aθ1}∀θ∈Θ ∪ ã1 ∪ ã2

• The signal space is: S = {sθ}θ∈Θ.

For this instance and ε > 0, we specify the sender’s prior µ0, the fixed signaling scheme π and
the sender and receiver utilities u, v as follows:

• Prior µ0: µ0(ω̃) = 1− ε ; ∀θ, µ0(ωθ) =
ε
|Θ| ; ∀aℓ, µ0(ωaℓ) = 0

• Signaling π: ∀θ, π(sθ|ω̃) = P (θ), π(sθ|ωθ) = 1; ∀θ ̸= θ′, π(sθ′ |ωθ) = 0 ; ∀θ, aℓ, π(sθ|ωaℓ) =
1
|Θ|

• Sender Utility u(a, ω):

• ∀aℓ, u(aθ∗, ωaℓ) = uℓ(a∗)
5

• ∀θ, u(aθ′∗ , ωθ) = −L if θ′ ̸= θ ; otherwise u(aθ∗, ωθ) = 0.

• ∀ω, u(ã1, ω) = −N ; u(ã2, ω) = −K

• u(aθ∗, ω̃) = uℓ(a∗), for all θ.

• Receiver Utility v(a, ω):

• ∀aℓ, v(aθ∗, ωaℓ) = uθf (a∗, aℓ) ; v(ã1, ωaℓ) = −M − 1 ; v(ã2, ωaℓ) = 0

• ∀θ, v(aθ′∗ , ωθ) = −M for θ ̸= θ′ ; v(aθ∗, ωθ) = 0 ; v(ã1, ωθ) = −M − 1 ; v(ã2, ωθ) = +K

• v(ã1, ω̃) = +N ; v(a ̸= ã1, ω̃) = 0

The high-level intuition for this instance is as follows. When the receiver sees a signal sθ (which is
proxying type θ in BS), we want them to only consider actions aθ0, a

θ
1, which directly corresponds

to follower utility of type θ in BS. Receiver utility in O, however, does not explicitly depend on
θ, but rather on the state ω. Hence we expand the state space to include ωθ states. Using a
fixed signaling scheme, we want to ensure that µc always induces a slight belief in the receiver
that states ωθ occurred. The sender is incentivized to do this since otherwise, the receiver could
take aθ

′
∗ actions at state ωθ (which occurs with non-zero probability), which is very bad for the

sender. They also don’t want to put too much weight on ωθ states, lest the receiver take the bad
(for sender) ã2 action. Lastly, we add an additional state ω̃ to ensure the OF objective captures
the BSG objective, which depends on the type. Formally, the OF optimization problem under this
instance construction above can be written as:

maximize
µc

(1− ε)
∑
θ

P (θ)u(a∗(µc, sθ))︸ ︷︷ ︸
state ω̃

+
ε

|Θ|
∑
θ

u(a∗(µc, sθ), ωθ)︸ ︷︷ ︸
for states ωθ where π(sθ|ωθ) = 1

(6)

s.t a∗(µc, sθ) = argmax
a∈A

µc(ωθ)v(a, ωθ) + P (θ)µc(ω̃)v(a, ω̃) +
1

|Θ|
∑
ωaℓ

µc(ωaℓ)v(a, ωaℓ)

 (7)

5where ∗ ∈ {0, 1}
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We now prove three intermediate results that will specify the necessary relations between the
constants used in our IOF instance and disentangle the key arguments needed for the reduction.

Lemma 2. If µc(ωθ) =
vmax

|Θ|M , ∀θ, µc(ω̃) = 0, with vmax ≤ M
1+K , then (1) the receiver always chooses

between the two action {aθ0, aθ1} on receiving signal sθ and (2) the sender utility is at least 0.

Proof. Since µc(ω̃) = 0, we need not consider the receiver taking action ã1, since it is dominated
by some other action at all remaining states. We first show that on some signal sθ, they will never
take action ã2. Indeed, it is incentive-compatible for the receiver to take action aθ0 as opposed to
ã2 on receiving a signal sθ:

µc(ωθ)[v(a
θ
0, ωθ)− v(ã2, ωθ)] +

1

|Θ|
∑
aℓ

µc(ωaℓ)[v(a
θ
0, ωaℓ)− v(ã2, ωaℓ)] (8)

= −µc(ωθ)K +
1

|Θ|
∑
ωaℓ

µc(ωaℓ)v(a
θ
0, ωaℓ) =

1

|Θ|

(
1− vmax

M

)
− Kvmax

|Θ|M
≥ 0 (9)

where the second equality in the second line follows since at state ωaℓ , the receiver utility matches
that of the BSG setting - i.e v(aθ0, ωaℓ) = uθf (a0, aℓ) - and in the BSG instances we care about, the

receiver always gets utility 1 by taking action a0, v(a
θ
0, ωaℓ) = 1 for all ωaℓ . This is greater than or

equal to 0 due to our choice of constants satisfying vmax ≤ M
1+K

6. Thus the receiver will not take
action ã2 on any signal sθ.

Next, we show that the receiver will not take any “incorrect type” actions aθ
′

∗ on receiving signal
sθ. Suppose by contradiction they take a deviating action aθ

′
∗ . Then they can expect a utility of

at most vmax

|Θ| − vmax

|Θ| = 0. But we know they can achieve a utility of at least 1 by playing aθ0 on

each signal sθ. Thus, under the given specifications of µc, the receiver will always play action aθ∗ on
signal sθ. Since the sender’s utility on such actions is always at least 0 (mainly due to BSG instance
having binary leader utility), the sender achieves at least 0 expected utility under this µc.

Lemma 3. Let ε ∈ (0, 1), L > |Θ|
ε , vmax ≤ M

1+K , and N,K > 1
(1−ε)Pmin

. Then for an optimal

solution µ∗
c , the receiver only takes actions from {aθ0, aθ1} when receiving signal sθ. This holds even

if sender utilities are scaled by a positive constant.

Proof. We partition the cases where this does not hold into three cases and for each, we indicate
the suboptimality of µ∗

c with respect to a feasible solution that does conform to the above.

(1) ∃ a signal sθ where the receiver takes action ã1. If this were to occur, the sender utility is
at most (note that the max sender utility in our IOF instance is 1 and in states ωθ, the maximum
utility is 0):

−N(1− ε)P (θ)︸ ︷︷ ︸
on ω̃ and signal θ

+ (1− ε)︸ ︷︷ ︸
on ω̃ and other signals

− Nε

|Θ|︸︷︷︸
on ωθ and sθ

≤ −N(1− ε)P (θ) + 1 <
−P (θ)

Pmin
+ 1 ≤ 0 (10)

6We assume ties break in favour of aθ actions
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where the last inequality arises from substituting the lower bound of N specified. The sender thus
achives negative utility. However, using claim 1, we know of a feasible specification of µc under
these parameters where the sender can achieve at least 0 utility. Thus the µ∗

c here cannot be
optimal. Note that when we scale by a positive constant, the last part of Eq. (10) simply becomes

c
[
P (θ)
Pmin

+ 1
]
≤ 0 for the same reason as above.

(2) ∃ a signal sθ where the receiver takes action ã2. As before, if this were to occur, the sender
utility for this µ∗

c is at most:

−K(1− ε)P (θ) + (1− ε)− Kε

|Θ|
≤ −K(1− ε)P (θ) + 1 ≤ −P (θ)

Pmin
+ 1 ≤ 0 (11)

where in the last inequality, we substitute the lower bound of K specified. As before, the sender
archives negative utility, even through claim 1 shows it is possible to achieve a utility of 0, indicating
suboptimality. Further, it is impervious to positive scaling of sender utilities.

(3) ∃ a signal sθ where the receiver takes an action aθ
′

∗ . If this were to occur, consider the sender
utility:

(1− ε)
∑
sθ

P (θ)u(a∗(µc, sθ))︸ ︷︷ ︸
at most 1

+
ε

|Θ|
u(aθ

′
∗ , ωθ)︸ ︷︷ ︸
−L

+
ε

|Θ|
∑
sθ̂

u(a∗(µc, sθ̂), ωθ̂)︸ ︷︷ ︸
at most 0

(12)

≤ (1− ε)− Lε

|Θ|
≤ 1− Lε

|Θ|
< 0 (13)

where the last inequality follows since |Θ|
ε < L. Again the sender receives negative utility when it

is possible to achieve at least 0 utility due to claim 1. As before, if we were to scale by a positive

constant c, inequality 13 simply becomes c
[
(1− ε)− Lε

|Θ|

]
< 0 which still becomes negative due to

the choice of L.

Lemma 4. Let ε ∈ (0, 1), L > |Θ|
ε , vmax ≤ M

1+K , and N,K > 1
(1−ε)Pmin

. Then for an optimal

solution µ∗
c , we can construct a solution µ′ in poly-time such that OF(IOF , µ

∗) = OF(IOF , µ
′),

µ′(ω̃) = 0, a∗(µ′
c, sθ) ∈ {aθ1, aθ0}. This holds even when all sender utilities are scaled by a positive

constant.

Proof. From claim 2, we already know that µ∗
c satisfies a∗(µ∗

c , sθ) ∈ {aθ1, aθ0}. We now show that
any weight µ∗

c places on µ(ω̃) can be shifted without changing this invariant. For each signal sθ, let
aθ denote the receiver’s optimal action for this signal. Then the receiver’s incentive compatibility
for aθ implies:

−µc(ω̃)P (θ)v(a′, ω̃)− µc(ωθ)v(a
′, ωθ) +

1

|Θ|
∑
aℓ

µc(ω)[v(a
θ, ωaℓ)− v(a′, ωaℓ)] ≥ 0 ∀a′ (14)

Now consider a µ′
c where µ′

c(ω̃) = 0 and µ′
c(ω ̸= ω̃) = 1

1−µ∗
c(ω̃)

µ∗
c(ω). This is clearly a valid

distribution since
∑

µc(ω) =
1

1−µ∗
c(ω̃)

∑
µ∗
c(ω) = 1. When a′ = ã1, since the invariant is originally

maintained and v(ã1, ω̃) = +N , the negative first term in Eq. (14) becomes 0 and the last two
terms (which together must have been positive) are just increased in scale. Hence the invariant is
maintained. For any a′ ̸= ã1, the first term is 0 in Eq. (14), and the adjusted µ′

c simply scales the
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remaining two terms which must be non-negative. Hence the invariant is always maintained. In
other words, a∗(µ′

c, sθ) = a∗(µ∗
c , sθ) ∈ {aθ0, aθ1}. Lastly, since the choice of µc only affects the sender

through the decision taken by the receiver, and both µ∗
c and µ′

c lead the receiver to always behave
in the same way, the sender utility is unchanged and the claim holds.

We now prove BSG can be reduced to OF. For a BSG instance IBS = (Θ,Aℓ,Af , P (θ), uℓ, uf ),
we construct an instance IOF = (Ω,A, S, µ0, π, u, v) as described earlier, in poly-time. Next,
consider an instance I ′

OF = (Ω,A, S, µ0, π,
1

1−εu, v), which is identical to IOF , except all sender

utilities are now scaled by 1
1−ε . Note that claims (1) and (3) depend purely on the receiver utility

and sender utilities for aθ actions at ωaℓ states being non-negative and the statement of (2) highlights
that it holds when the sender utilities are scaled by a positive constant. In other words, all three
claims hold on instance I ′

OF . We now show that for any optimal µ∗
c to instance I ′

OF , there exists
a feasible x′ that archives the same utility on the corresponding BSG instance. Similarly, for an
optimal x∗ to IBS , there exists a µ

′
c that archives the same utility on the corresponding OF instance.

This naturally implies BS(IBS , x
∗) = OF(I ′

OF , µ
∗
c).

=⇒ Suppose we have an optimal µ∗
c for instance I ′

OF ; without loss of generality, we assume µ∗
c(ω̃) =

0 (if this is not the case, we can use Claim 3 to construct it to be so in poly-time). Since at each sθ,
we are guaranteed that a∗(µ∗

c , sθ) ∈ {aθ1, aθ0}, the sender utility is simply (1−ε)
∑

θ P (θ)u(a∗(µ∗
c , sθ)),

which corresponds to the utility at state ω̃ (note that µ0(ω̃) is not 0). For any sθ, without loss of
generality, let aθ1 denote the optimal action. Then incentive compatibility with respect to aθ0 (the
only other action possible since claim 3 disavows all others) implies:

1

|Θ|
∑
ωaℓ

µ∗
c(ωaℓ)[v(a

θ
1, ωaℓ)− v(aθ0, ωaℓ)] + µ∗

c(ωθ) [v(a
θ
1, ωθ)− v(aθ0, ωθ)]︸ ︷︷ ︸

0

≥ 0 (15)

Let x′ ∈ ∆|Aℓ| be as follows: x(aℓ) = 1∑
ω′
aℓ

µ∗
c(ω

′
aℓ

)µ
∗
c(ωaℓ). Clearly this is a valid strategy since∑

aℓ
x(aℓ) = 1. Further, since this is just scaling of the µ∗

c(ωaℓ) we have that:

0 ≤
∑
aℓ

x(aℓ)[v(a
θ
1, ωaℓ)− v(aθ0, ωaℓ)] =

∑
aℓ

x(aℓ)[u
θ
f (a1, aℓ)− uθf (a0, aℓ)] (16)

This implies that the optimal action for a follower of type θ for strategy x′, a∗f (θ, x) = a∗(µ∗
c , sθ),

which is the optimal action for the OF receiver for the optimal framing µ∗
c and signal sθ. For

∗ ∈ {0, 1}, since the sender utility for aθ∗ actions at the ω̃ state in IOF is the same as the leader’s
utility for action a∗ in BS, and we are using I ′

OF where this sender utility is scaled by 1
1−ε , we have

that:
OF(µ∗

c) = (1− ε)
∑
θ

P (θ)u(a∗(µ∗
c , sθ)) =

∑
θ

P (θ)uℓ(a
∗
f (x

′, θ)) = BS(x′) (17)

⇐= Suppose we have an optimal solution to the x∗ to the BSG instance IBS . Then by definition,
the incentive compatibility condition holds for any type θ and the follower’s optimal action. For
an arbitrary type θ, let the optimal receiver action be a1 without loss of generality. Then:∑

aℓ

x∗(aℓ)[u
θ
f (a1, aℓ)− uθf (a0, aℓ)] ≥ 0 (18)

Now consider constructing µ′
c as follows. We first set µ′

c(ω̃) = 0 and µ′
c(ωθ) =

vmax

|Θ|M for all θ. Due
to claim 1, we already know that under this strategy, the receiver in the IOF instance will only
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choose between {aθ0, aθ1} upon receiving a signal sθ - in other words, we need not concern ourselves
with actions ã1, ã2 or any aθ

′
∗ , since these are dominated. Next, we set µ′

c(ωaℓ) =
(
1− vmax

M

)
x∗(aℓ).

Observe that this is a valid distribution since
∑

ω µ′
c(ω) =

(
1− vmax

M

)
+ vmax

M = 1. We then
observe since Eq. (18) holds for x(aℓ), and µ′

c is simply a rescaling of x(aℓ) on the ωaℓ states, and
uθf (a∗, aℓ) = v(aθ∗, ωaℓ): ∑

ωaℓ

µ′
c(ωaℓ)[v(a

θ
1, ωaℓ)− v(aθ0, ωaℓ)] ≥ 0 (19)

The expression is indeed sufficient to conclude that aθ1 is optimal for the OF instance receiver
on getting signal sθ since our construction of µ′

c ruled out all other actions except aθ∗. Since
uℓ(a

θ
∗, aℓ) = uℓ(a

θ
∗) = u(aθ∗, ω̃) in the IOF instance, and we are using I ′

OF where this sender utility
is scaled by 1

1−ε , we have that:

BS(x∗, IBS) =
∑
θ

P (θ)uℓ(a
∗
f (x, θ)) = (1− ε)

∑
θ

P (θ)
1

(1− ε)
uℓ(a

∗
f (x, θ)) (20)

= (1− ε)
∑
θ

P (θ)u(a∗(µ′
c, sθ)) = OF(µ′, I ′

OF ) (21)

where the last equality follows from the fact that µ0(ωaℓ) = 0 and the receiver is always taking
actions of type aθ∗ on signal sθ, wherein we recall that π(sθ|ωθ) = 1 sender utility u(aθ∗, ωθ) = 0.

We have thus shown that the specific class of Bayesian Stackelberg games proven by Conitzer
and Sandholm [6] to be NP-Hard, can be expressed as an instance of the optimal framing problem,
whose optimal solution exactly matches that of the BSG instance. The result of [6] in-fact, implies
something stronger. They show that for a graph G = (V,E), it is possible to construct a BSG
instance of the type above such that the graph has an independent set of size K if and only if the
optimal leader utility in the BSG instance is at least |E|

|E|+1 + K
|V |(|E|+1) .

Their reduction uses |E|+ |V | types with the Pmin = 1
|V |(|E|+1) . Since the sender utility is binary,

there is no independent set of size K if and only if the optimal leader utility ≤ |E|
|E|+1 + K−1

|V |(|E|+1) .

This means that any 1
2|V |(|E|+1) additive approximation to the optimal leader utility would allow us

to solve the K-Independent set problem, which is NP-Hard. Since they have |E|+|V | and |V | leader
actions, we can formally state that it is NP-Hard to compute a 1

2|Θ||Aℓ| additive approximation to
the BSG problem.

This additive approximation factor is predicated when the sender utility includes constant
L > |Θ|

ε and N,K ≥ 1
(1−ε)Pmin

for some ε ∈ (0, 1). To normalize this for utilities in the range

[0, 1], we must divide by the range. If N or K dominates, then the range is 1
(1−ε)Pmin

+ 1 and any

approximation constant must be greater than 1
2|Θ||Aℓ| ·

(1−ε)Pmin

1+(1−ε)Pmin
≥ Pmin(1−ε)

4|Θ||Aℓ| . Now conversely,

if L dominates, then the range is |Θ|
ε + 1 and thus the approximation constant must be greater

than ε
2|Θ||Aℓ|(ε+|Θ|) ≥ ε

4|Θ|2|Aℓ|
. In the optimal framing instance we construct for the reduction,

|Θ| = |S| and |Ω| ≥ |Aℓ|. Thus, it is NP-Hard to approximate the OF problem up to an additive

min
(
Pmin(1−ε)
2|S||Ω| , ε

4|Θ|2|Aℓ|

)
factor.
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8 Section 4 Appendix

8.1 Proof of Proposition 3

Proof. Consider an unrestricted signal space S, and for an instance I, let (c∗, π∗) denote the optimal
strategy, with µ∗

c denoting the framing-induced belief. For this strategy, let m : A → S denote the
correspondence between actions to signals under (µ∗

c , π
∗). Then the sender utility is:∑

ω

∑
a

u(a, ω)
∑

s∈m(a)

π∗(s|ω) (22)

Consider a scheme π′(a|ω) =
∑

s∈m(a) π(s|ω). We note that the receiver takes action a when the
receiver observes signal a under this scheme since:

∀s ∈ m(a), ∀a′ :
∑
ω

µ∗
c(ω)π

∗(s|ω)[v(a, ω)− v(a′, ω)] ≥ 0

=⇒ ∀a′ :
∑
ω

µ∗
c(ω)[v(a, ω)− v(a′, ω)]

∑
s∈m(a)

π∗(s|ω) ≥ 0

It is thus clear that the sender utility from Eq. (22) in unchanged by using this direct scheme with
signal space S equal A as action recommendations.

8.2 Proof of Theorem 2

Proof. Without loss of generality, assume that the utility functions of the sender and the receiver
are bounded: ∀a ∈ A,∀ω ∈ Ω, u(a, ω) ∈ [0, 1], v(a, ω) ∈ [0, 1]. Recall that U∗(µ) is the solution to
the linear program outlined in Eq. (3). We aim to show that U∗(µ) is continuous at any µ ∈ ∆(Ω)
satisfying µ(ω) > 0,∀ω ∈ Ω. We break this result into a set of intermediate claims.

Lemma 5 (Continuity of posterior). Let π : Ω → ∆(S) be any signaling scheme. Let µ, µ′ ∈ ∆(Ω)
be two receiver beliefs. Let µs, µ

′
s be the posterior beliefs induced by signal s under π and priors µ,

µ′ respectively. Suppose minω∈Ω µ(ω) ≥ p0 > 0. Then, ∥µs − µ′
s∥1 ≤ 2

p0
∥µ− µ′∥1.

Proof of Lemma 5. Let π(s) =
∑

ω∈Ω µ(ω)π(s|ω) and π′(s) =
∑

ω∈Ω µ′(ω)π(s|ω) be the probability
of signal s under prior µ and µ′ respectively. By the definition of µs, µ

′
s and by triangle inequality,

∥µs − µ′
s∥1 =

∑
ω∈Ω

∣∣µ(ω)π(s|ω)
π(s) − µ′(ω)π(s|ω)

π′(s)

∣∣
≤

∑
ω∈Ω

∣∣µ(ω)π(s|ω)
π(s) − µ′(ω)π(s|ω)

π(s)

∣∣+ ∑
ω∈Ω

∣∣µ′(ω)π(s|ω)
π(s) − µ′(ω)π(s|ω)

π′(s)

∣∣.
For the first term above,∑

ω∈Ω

∣∣µ(ω)π(s|ω)
π(s) − µ′(ω)π(s|ω)

π(s)

∣∣ = ∑
ω∈Ω

π(s|ω)
π(s) |µ(ω)− µ′(ω)|.
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We note that, ∀ω ∈ Ω,

π(s|ω)
π(s) = π(s|ω)∑

ω′∈Ω µ(ω′)π(s|ω′) ≤
π(s|ω)

p0
∑

ω′∈Ω π(s|ω′) ≤
1
p0
. (23)

=⇒
∑
ω∈Ω

∣∣µ(ω)π(s|ω)
π(s) − µ′(ω)π(s|ω)

π(s)

∣∣ ≤ ∑
ω∈Ω

1
p0
|µ(ω)− µ′(ω)| = 1

p0
∥µ− µ′∥1. (24)

For the second term,∑
ω∈Ω

∣∣µ′(ω)π(s|ω)
π(s) − µ′(ω)π(s|ω)

π′(s)

∣∣ = ∑
ω∈Ω

µ′(ω)π(s|ω)
∣∣π′(s)−π(s)

π(s)π′(s)

∣∣
=

∑
ω∈Ω

µ′(ω)π(s|ω)
∣∣∑ω′∈Ω(µ

′(ω′)−µ(ω′))π(s|ω′)

π(s)π′(s)

∣∣
≤

∑
ω∈Ω

µ′(ω)π(s|ω)
∑

ω′∈Ω |µ′(ω′)−µ(ω′)|·maxω′∈Ω π(s|ω′)

π(s)π′(s)

= ∥µ′ − µ∥1
∑
ω∈Ω

µ′(ω)π(s|ω)
π′(s)

maxω′∈Ω π(s|ω′)
π(s)

by (23) ≤ ∥µ′ − µ∥1
∑
ω∈Ω

µ′(ω)π(s|ω)
π′(s)

1
p0

= 1
p0
∥µ′ − µ∥1.

Therefore, we obtain ∥µs − µ′
s∥1 ≤ 2

p0
∥µ′ − µ∥1.

Recall that in the model (Section 2) we assumed “every action a ∈ A is strictly inducible” in
the receiver. This means that there exists a constant D > 0 such that, for every action a ∈ A,
there exists a belief ηa ∈ ∆(Ω) for which Eω∼ηa [v(a, ω)− v(a′, ω)] ≥ D > 0 for every a′ ̸= a.

We now want to show the following: Suppose the prior µ ∈ ∆(Ω) satisfies µ(ω) ≥ 2p0 > 0, ∀ω ∈
Ω. Then, for any prior µ′ satisfying ∥µ′ − µ∥1 ≤ ε < min{p0,

p20D
2 }, we have:∣∣U∗(µ′)− U∗(µ)

∣∣ ≤ 4ε

p20D
.

This will directly prove the theorem.

Let π∗ be the optimal signaling scheme for µ, namely, a solution to the linear program in the
definition of U∗(µ). Let π∗(a) be the unconditional probability that π∗ sends signal a under prior
µ: π∗(a) =

∑
ω∈Ω µ(a)π∗(a|ω). Let µa ∈ ∆(Ω) be the posterior belief induced by signal a under

prior µ:

µa(ω) =
µ(ω)π∗(a|ω)

π∗(a)
, ∀ω ∈ Ω.

Since π∗ is persuasive (the constraint in the linear program), a must be an optimal action for the
receiver on posterior µa:

Eω∼µa [v(a, ω)− v(a′, ω)] ≥ 0, ∀a′ ̸= a.

According to inducibility assumption, there exists a belief ηa ∈ ∆(Ω) for which Eω∼ηa [v(a, ω) −
v(a′, ω)] ≥ D > 0 for every a′ ̸= a. Consider the convex combination of µa and ηa with coefficients
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1− δ, δ (we will choose δ in the end): ξa = (1− δ)µa + δηa. By the linearity of expectation, a must
be better than any other action a′ by δD on belief ξa:

Eξa [v(a, ω)− v(a′, ω)] = (1− δ)Eµ̂a [v(a, ω)− v(a′, ω)] + δEηa [v(a, ω)− v(a′, ω)] ≥ δD. (25)

Let ξ =
∑

a∈A π∗(a)ξa ∈ ∆(Ω), and write µ as the convex combination of ξ and another belief
χ ∈ ∆(Ω):

µ = (1− y)ξ + yχ =
∑
a∈A

(1− y)π∗(a)ξa + yχ. (26)

Lemma 6 (Proposition 1 of [31]). If δ ≤ p0, then there exist χ on the boundary of ∆(Ω) and
0 ≤ y ≤ δ

p0
≤ 1 that satisfy (26).

Since (26) is a convex decomposition of the prior µ, according to [19], there exists a signaling
scheme π̃ that induces posterior ξa with probability (1− y)π∗(a), for a ∈ A, and the posterior that
puts all probability on ω with probability yχ(ω), for ω ∈ Ω. Namely, π̃ has signal space S = A∪Ω
and signal probability

π̃(s|ω) =


(1−y)π∗(a)ξa(ω)

µ(ω) for s = a ∈ A;
yχ(ω)
µ(ω) for s = ω ∈ Ω;

0 otherwise.

It is not hard to verify that, under prior µ and signaling scheme π̃, the posterior induced by signal
a ∈ A is equal to ξa, and the posterior induced by signal ω is the deterministic distribution on ω.

We show that, whenever π̃ sends an action recommendation a ∈ A, the recommendation is
persuasive for the receiver under any prior µ′ in B1(µ, ε) = {µ′ : ∥µ′ − µ∥1 ≤ ε}.

Claim 1. Suppose δ ≥ 2ε
p0D

. Then, for any prior µ′ ∈ B1(µ̂, ε), any action recommendation a ∈ A
from π̃ is persuasive.

Proof. By continuity of posterior (Lemma 5), the posteriors induced by signal a under prior µ and
µ′ satisfy

∥µa − µ′
a∥1 ≤ 2

p0
∥µ− µ′∥1 ≤ 2ε

p0
.

Note that the posterior µa = ξa, so ∥ξa − µ′
a∥1 ≤ 2ε

p0
. Then, since the receiver’s utility is in [0, 1],

for any action a′ ̸= a,∣∣Eω∼µ′
a
[v(a, ω)− v(a′, ω)]− Eω∼ξa [v(a, ω)− v(a′, ω)]

∣∣ ≤ ∥µa − ξa∥1 ≤ 2ε
p0
.

Together with (25), we get

Eω∼µa [v(a, ω)− v(a′, ω)] ≥ δD − 2ε
p0

≥ 0.

Thus, the action recommendation a is persuasive.

Then, we show that the signaling scheme π̃ is “close to” π∗ in the following sense:
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Claim 2. For any a ∈ A and ω ∈ Ω, |π̃(a|ω)− π∗(a|ω)| ≤ δ
p0

+ y.

Proof. By definition,

|π̃(a|ω)− π∗(a|ω)| =
∣∣∣(1− y)π∗(a)ξa(ω)

µ(ω)
− π∗(a)µa(ω)

µ(ω)

∣∣∣
≤ (1− y)

∣∣∣π∗(a)ξa(ω)

µ(ω)
− π∗(a)µa(ω)

µ(ω)

∣∣∣+ y · π
∗(a)µa(ω)

µ(ω)

= (1− y)
π∗(a)

µ(ω)

∣∣ξa(ω)− µa(ω)
∣∣+ y · π∗(a|ω)

= (1− y)
π∗(a)

µ(ω)
· δ
∣∣ηa(ω)− µa(ω)

∣∣+ y · π∗(a|ω)

≤ (1− y)
1

p0
· δ · 1 + y · 1 ≤ δ

p0
+ y.

Let U(µ, π̃) be the sender’s expected utility when using signaling scheme π̃. Since the action
recommendation from π̃ are persuasive under prior µ (Claim 1), the receiver takes a when receiving
signal a. When receiving any signal ω, the receiver takes some action a∗ω ∈ argmaxa∈A v(a, ω). So,

U(µ, π̃) =
∑
ω∈Ω

µ0(ω)
(∑

a∈A
π̃(a|ω)u(a, ω) + π̃(ω|ω)u(a∗ω, ω)

)
.

Because we assumed u(a, ω) ≥ 0,

U(µ, π̃) ≥
∑
ω∈Ω

µ0(ω)
∑
a∈A

π̃(a|ω)u(a, ω) =: UA(π̃).

where UA(π̃) denotes the expected utility from action recommendation signals, which is also the
objective function of the linear program in the definition in U∗(µ). Note that UA(π

∗) = U∗(µ). We
claim that UA(π̃) cannot be too much worse than UA(π

∗):

Claim 3. Given δ ≥ 2ε
p0D

, we have UA(π̃) ≥ UA(π
∗)− 2δ

p0
.

Proof. By definition,

UA(π̃) =
∑
ω∈Ω

µ0(ω)
∑
a∈A

π̃(a|ω)u(a, ω)

(by Claim 2) ≥
∑
ω∈Ω

µ0(ω)
∑
a∈A

π∗(a|ω)u(a, ω)−
( δ

p0
+ y

)∑
ω∈Ω

µ0(ω)
∑
a∈A

u(a, ω)︸ ︷︷ ︸
≤1

≥ UA(π
∗)− y − δ

p0
≥ U(π̂, µ0, µ̂)−

2δ

p0

where in the last line we used y ≤ δ
p0

from Lemma 6.
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Because π̃ is persuasive for any prior µ′ ∈ B1(µ, ε) and UA(π̃) ≥ UA(π
∗)− 2δ

p0
, we have:

U∗(µ′) ≥ U(µ′, π̃) ≥ UA(π̃)

≥ UA(π
∗)− 2δ

p0

= U∗(µ)− 2δ

p0
≥ U∗(µ)− 4ε

p20D

where we let δ = 2ε
p0D

. By a symmetric argument, we also have U∗(µ) ≥ U∗(µ′) − 4ε
p20D

, which

implies |U∗(µ′)− U∗(µ)| ≤ 4ε
p20D

.

9 Experimental Setup

9.1 Instance parameters

Here we include the detailed setup of the real-estate example we used to verify our framework
experimentally. Note that the utilities here are not within the range [0, 1], but can be normal-
ized to be so without loss of generality. Indeed, the utility values highlighted in Section 5 are
normalized utilities according to the [0, 1] scale. There are 4 possible states for each instance:
(good, cheap), (good, expensive), (bad, cheap), (bad, expensive). Each buyer, however, has a differ-
ent notion of “good” and “cheap” (see the buyer profiles in Section 5.2). We index these states 0
through 3. The instances share the same utilities but have different realtor priors. Rows correspond
to “not buy” and “buy”.

• Realtor prior for Henry: [0.1, 0.35, 0.3, 0.25]

• Realtor prior for Lilly: [0.2, 0.4, 0.1, 0.3]

• Realtor Utility:

[
0 0 0 0

−0.25 1 −0.5 0.75

]
• Buyer Utility (both Henry and Lilly):

[
−1 0 0 0
0.75 −0.25 0.25 −3

]

9.2 Intermediate Results

We observe that the iterative generation process finds a good framing within 4 to 5 iterations;
thereafter, the results it produces becomes poor. The process also tends to find high utility solutions
fairly easily, but they often score low on correctness at first. The “final score” in the plots is the
sender utility multiplied by the correctness score.

• Henry Instance, Iteration 2: Meet Jeremy Hammond, a dedicated realtor with 8 years of
experience in the Boston area and a strong foundation as a contractor. His expertise in home
maintenance and repair ensures you’ll find properties that require minimal effort, allowing
you to focus on enjoying the great outdoors. As an active community member and nature
enthusiast, Jeremy understands the importance of access to parks and trails. He is committed
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(a) Score over iterations on the Henry Instance (b) Scores over iterations on the Lilly Instance
Figure 3: Scores over multiple iterations of the LLM generating framing. Final score is the product
of the utility and the correctness score.

to guiding clients toward quality homes that align with an active lifestyle, making him an
excellent choice for discovering properties that fit your needs and budget.

• Lilly Instance, Iteration 4: Jeremy Hammond is a knowledgeable realtor in Boston with over
8 years of experience, including 6 years as a realtor and a prior background as a contractor.
His hands-on approach allows him to identify quality homes that cater to families. As a father
himself, Jeremy appreciates the importance of finding spacious, welcoming neighborhoods. He
is actively involved in the community, giving him insights into local schools and amenities.
Trust Jeremy to help you navigate the suburban landscape, ensuring you find a home that
combines comfort, community, and family-friendly features.

To give an example of some intermediate results, consider the framing generated at iteration 2
of the Henry instance. It scores well on utility but not on correctness. The justification given by
the LLM is it may be leap to consider Jeremy having expertise in home maintenance and repair,
despite being a contractor, since no further information was specified. Further it is is not clear
whether his 8 years of experience as a realtor were all in Boston (the last 2 were). In iteration 4 of
the Lilly instance, the LLM notes that Jeremy has a combined 8 years of experience in real-estate,
not the 6 specified in the framing.

9.3 Prompts to Estimating Beliefs from Framing

To estimate the belief for a given framing, we use the following prompt template. The key-words
buyer name and buyer desc and realtor desc correspond to the instance parameters mentioned
in Section 5.2:

You will be used as a proxy for a (human) person looking to buy a house. You will be given a
description of the potential buyer (their preferences, etc) and a description of a real estate agent
soliciting clients. You will be asked to provide your responses in a JSON format specified in the
prompt.

GENERAL PROBLEM DESCRIPTION: Both the client and realtor are based in Boston. You
can imagine a house has the following features: (good, cheap), (good, expensive), (bad, cheap),

35



(bad, expensive). Please see below for what constitutes “good” and “bad” for this buyer that you
are acting as a proxy for.

BUYER DESC: buyer desc

REALTOR DESC: realtor desc

TASK DESC: Given your general knowledge about the Boston housing market, it’s general
pricing/cost-of-living and most importantly, this description of the realtor, what are the probabilities
(across the 4 categories as defined by buyer name preferences) for houses this realtor might be
familiar with/used to showing. Explain your reasoning but please give a precise probability vector
(of size 4) for the 4 states a house listed/shown/specialized in by this realtor can have. To give
context, we wish to determine what this realtor is usually showing/familiar with see if that matches
buyer name preferences. Please pay attention to the tangible aspects of this realtor’s description
and background (ignore fluff like excellent customer service) and how they relate to buyer name.
Lastly, recall that a probability vector must sum to 1. Provide your response in the following JSON
format:

{

"probabilities": {

"good_cheap": float,

"good_expensive": float,

"bad_cheap": float,

"bad_expensive": float

},

"reasoning": string

}

9.4 Prompts to Search over the Framing Space

To search over the framing space, we use the following prompt template. The key-words buyer name

and buyer desc and realtor desc correspond to the instance parameters mentioned in Section
5.2. Any generated framing and corresponding feedback is appended to this prompt for the next
iteration:

You will be asked to generate a short description/bio of a realtor (in json format) to make them
appeal to a specific buyer.For each description you generate, quantitative feedback will be provided
on the generated, which you will use to improve what you generate.

TASK DESC: You will be given a REALTOR PROFILE that outlines features and attributes
of a realtor. You will be given BUYER DESC that outlines properties of a house buyer we wish
to target. Your task is to generate at most 100 words REALTOR DESC string that will be shown
to this buyer. Given this profile you generate, the buyers perception of the type of houses the
realtor can show them will be measured (quantitatively). Please see BUYER DESC fow how we
partition possible houses into 4 states - it is the buyer’s belief over these states that we measure.
Using this perceived prior, we will signal the buyer (think Bayesian Persuasion) to influence their
actions (which are buy or not buy).We will compute all of this and give you numerical feedback
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(see FEEDBACK DESC). Please use this feedback to improve the REALTOR DESC you generate.
Note that the realtor profile you generate directly influences how the buyer perceives this realtor
and their possible expertise and offerings which is captured in the perceived prior. This will directly
influence the utility we can derive after signaling. To give a simple example, if you can generate a
prior such that the buyer with high probability thinks that the houses this realtor can show/offer is
good and cheap, they may be more inclined to buying.

FEEDBACK DESC: Whenever you generate a REALTOR DESC, you will be given feedback
as follows: correctness score: [0,1] specifies whether you wrote something blatantly incorrect given
realtor desc.
prior generated: The generated prior and the reasoning given by the buyer for this belief.
realtor utility: The expected utility the realtor could get with the given prior.
final score: realtor utility*correctness score. This is what we are trying to maximize.

REALTOR PROFILE: realtor desc

BUYER DESCRIPTION: buyer desc

Please generate a REALTOR DESC in json form with key REALTOR DESC and we will give
you feedback. Avoid just re-stating the preferences of the buyer.

9.5 Prompts to Score Soundness

We use the following prompt to score for soundness, which we refer to correctness in the prompt:

You will be given a profile of a realtor (labelled REALTOR PROFILE) agent which includes
various information about them. You will also be givea short natural language bio/description
(labelled REALTOR DESC) about them that is meant to be shown to a prospective buyer who may
wish to work with them.

Your goal is to score the REALTOR DESC (give a number between 0 and 1 with 0 being bad
and 1 being good) on correctness.

Correctness refers to whether the REALTOR DESC mentions something that is clearly in
contradiction/factually incorrect given the information in the profile. For example, the REAL-
TOR DESC mentioning the realtor has 2 kids, when the REALTOR PROFILE explicitly states
that he has no children. For blatant incorrectness like this, give 0. For this same example, however,
if the REALTOR DESC mentions the realtor has 2 kids and the REALTOR PROFILE did not
explicitly mention anything about kids, then it DOES NOT violate correctness (and should have
score 1). I.e. not mentioning information does not violate correctness. Note that platitutdes about
their skills or abilities or general flowery descriptions also do not violate correctness. But making
leaps about their work/professional capabilities can be a violation. If it is something plausible about
their expertise but not directly in the profile give it between 0.4 and 0.6 score. If there is place-
holder text or any text that is not presentable to the buyer, give it 0. For given instance, return a
correctness score. Please see some example scoring below. This is an example, not the real instance.

REALTOR PROFILE: Richard Clarkson is Male, 42 years old, Worked with the our firm for 2
years, Worked previously as a realtor for 6 years, and a contractor before that. Lives with his wife
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and 3 kids and a dog and a cat in Downtown Boston. Hobbies include playing the drums, spending
time with kids, hiking, and backyard gardening Active member of his Home Owner’s Association.

REALTOR DESC (1): Richard is dedicated and highly experienced real estate agent specializ-
ing in the Denver area. Proven success in navigating complex negotiations and market trends to
provide exceptional client experiences. Known for personalized attention and exceeding client. -
correctness score: 0 (Since it mentiones Jeremy as working in Denver when in reality they are in
Boston)

REALTOR DESC (2): Richard is an seasoned realtor with 8 years of experience in real-estate.
He loves to spend time in the great outdoors and is an avid hiker. - correctness score: 1 (2 years
with this company and 6 with an earlier one is 8 years)

REALTOR DESC (3): If you want a spacious house look no further than Richard, he lives in
big mansion with his wife and kids. - correctness score: 0.2 (Makes a somewhat unplausible leap
that Richard lives in a mansion when the profile does not say anything of that sort)

REALTOR DESC (4): Richard is dedicated and highly experienced real estate agent specializing
in the Boston area. He can navigate complex settings and work to ensure his clients get the best
deal possible. You will get attention to detail, perseverance and exception skill with Richard. -
correctness score: 1 (Does no mention anything factually incorrect)

REALTOR DESC (5): Richard is a Boston realtor. The realtor James enjoys biking and finds
houses close to nature. - correctness score: 0 (Statement about Richard is correct. But mentions
another realtor James, which is not part of the REALTOR DESC)

REALTOR DESC (6): Richard is a Boston realtor. He specializes in [SPECIALIZATIONS]. -
correctness score: 0 (Statement about Richard is correct. But includes placeholder text or text that
is not proper to show a buyer)

REALTOR DESC (7): Richard the realtor focuses on commercial and lakeside properties in the
Boston and offers relocation services. - correctness score: 0.2 (While nothing that is an explicit
contradiction, it does make many suppositions which may not be accurate.)

REALTOR DESC (7): Richard sepcializes in fixer-uppers that are below market price. - cor-
rectness score: 0.3 (The realtor profile does not mention anything like specific like this)

For the given instance of REALTOR PROFILE and REALTOR DESC please explain your
reasoning first before scoring REALTOR DESC on the correctness score. Return a JSON object
with the key ”reasoning”, which is a natural language description of why you chose the score. Then
use keys ”correctness score” whose value is a number between 0 and 1 to give your score.

REALTOR PROFILE: realtor desc

REALTOR DESC: framing
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