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Abstract

We consider multiple agents competing to acquire stakes in some costly divisible resource
(e.g. shares of a financial asset, compute resources, or commodities) over time. We propose
a novel game-theoretic model for this problem that generalizes settings studied in diverse lit-
eratures, and analyze it under different assumptions on agent information. Given complete-
information, we establish the existence and uniqueness of a pure Nash equilibrium (NE) in this
generalized setting. This is shown to be efficiently computable but has worst-case unbounded
price of anarchy. Alternatively, under partial-information with a common prior, we establish
the existence and uniqueness of a Bayesian Nash equilibrium (BNE), which is also efficiently
computable. Finally, we propose a more realistic learning setting for the game, where agents
have partial information but no common prior. Instead, they must learn how to act given
online contextual feedback from interactions in stochastically sampled game instances. We pro-
vide sufficient conditions on agents doing simultaneous no-regret learning for convergence to
Bayesian coarse-correlated equilibrium (BCCE) or last-iterate convergence to the BNE. In each
setting, we provide detailed simulations, which empirically validates our theory and provides
new insights into strategic behavior of resource acquisition.
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1 Introduction

Consider multiple traders attempting to acquire a position in a stock ahead of an earnings release,
under the belief that its price will rise afterward. If each trader were acting in isolation, they might
follow a classical optimal execution strategy — such as that of Almgren and Chriss [2] — to minimize
their trading costs. However, if multiple traders are pursuing their strategies simultaneously, their
aggregate activity influences prices and liquidity. This interaction transforms the problem from one
of individual optimization into one of understanding the intra-agent strategic behavior, where each
agent’s decisions affect the market environment faced by others.

This challenge of acquiring costly resources in competitive, dynamically priced environments
extends well beyond financial markets. For instance, a firm training a large machine learning model
may need to secure substantial cloud computing resources within a given time frame. Here too, spot
prices are shaped by aggregate demand across many users, requiring firms to account not only for
their own scheduling and budget constraints but also for how their actions interact with others [26].
Further, agents in many such environments may only have partial or incomplete knowledge of other
market participants or the market itself.

While recent works have attempted to capture these strategic perspectives, they do so with
several limitations. Chriss [8, [9] [7] all consider a complete-information setting, which is unrealistic
in all but very limited scenarios. Chriss [10], Kearns and Shi [I5] more recently consider some
extensions to deal with this, but these also have major limitations, requiring shared common priors
over uncertain information or repeated play of fixed game instances respectively. Furthermore, all
of these works: (1) require agents to acquire a fixed target position, thereby ruling out more general
action constraints; (2) do not allow for custom objectives that agents may wish to optimize along-
side acquisition costs; and most importantly (3) do not address the computational and learning
challenges that arise when agents act under incomplete information without common priors. In
addition, these works are all finance-specific. The broad scope and practical relevance of this prob-
lem thus necessitates a general game-theoretic framework that can gracefully accommodate diverse
applications and practical limitations of real-world markets, which is the foundational premise of
our work.

1.1 Owur Contribution

e In Section [2] we propose a novel model for this problem, which generalizes and improves on past
settings, by allowing for convex constraints, concave idiosyncratic utility functions, and unknown
or incomplete information available to the agents.

e In Section [3| we characterize the complete-information equilibria properties of this game. Even
within our very general model, the game still has a unique, pure NE that is efficiently computable.
We also show that in the worst-case, the price of anarchy of this game is unbounded.

e In Section [4] we consider the partial-information Bayesian setting: each agent only observes
their own private information (their “type”), but all agents have common knowledge of the
prior distribution over agent types and game parameters. We extend the complete-information
results here, establishing the uniqueness and efficient computability of the Bayesian NE (BNE).

e In Section [5] we further extend our model to a more realistic learning-based setting, where agents
only observe their own type, but do not have any knowledge of the prior distribution over types
and game parameters. Instead, they learn from repeated interaction, where they iteratively
decide their strategy conditioned on their realized type. This naturally models learning to



acquire resources in competition, given contextual information. We establish sufficient conditions
under which agents engaging in simultaneous no-regret learning either convergence to a Bayesian
coarse-correlated equilibrium (BCCE) on average over rounds, or to the BNE in the final round.

e For each setting, we provide simulations showcasing the respective algorithms.

1.2 Related Work

The most relevant related work to our setting is the recent line of work on optimal position building
under competition in Chriss [8, 9, [7, [10], Kearns and Shi [I5] that we discussed above. Our work
can be seen as a generalization of these, for both financial and non-financial applications. We
provide a detailed discussion of how our setting relates to and subsumes the settings in these works
in Appendix To the best of our knowledge, there is no existing work that have considered
strategic aspects of resource application in on-financial settings, although researchers have noted
noted the relevance of such considerations, e.g. in compute markets Shastri and Irwin [26].

More broadly, our model captures standard notions of market impact in finance, of which there
is a large literature (see e.g. Webster [29], Li et al. [I§] and citations therein for a recent detailed
overview). These works broadly consider how prices change in response to trading (both theoret-
ically and empirically from real markets). In this literature, market impact is often decomposed
into permanent and temporary impact [2, 4, 20], which is the same approach that we take. There
are also some more flexible models such as the propagator model [6l [12], 22] that allow for transient
impacts in between these extremes; we do not consider these, but such extensions would be an
interesting direction for future work.

Our work also relates to the literature on learning in games more broadly. Of particular note,
our setting in Section [5|is very similar in spirit to the setting of Hartline et al. [I3], who provide a
general framework for no-regret learning in repeated Bayesian games. Although our model is slightly
outside their framework (as it allows continuous market types), and has some specific structure that
we can leverage (strongly monotone) our Theorem || is very motivated by their theory.

Our strategic setup is conceptually related to resource allocation — or more generally, congestion
— games, where agents share resources, and the cost of any resource depends on its demand [24]. In
contrast to this setting, our work studies behavior under time-varying prices, which endogenously
adjusts based on supply and demand. Lastly, while we study competitive resource acquisition in
a market setting, a non-market variant has long been studied in the context of fair division [21]
for both divisible and indivisible goods. Recent literature here has extended this problem to an
online setting (see Aleksandrov and Walsh [1] for a survey), and often incorporates learning and
predictions [5], spiritually motivating our model in Section

2 Model

Preliminaries: ~ We consider a market consisting of n strategic agents looking to trade (buy/sell)
some costly, divisible resource (stock, bond, compute time, etc.) over a period of T rounds. In
the simplest setting, each strategic agent ’s action is a T-dimensional vector h;, where h;; denotes
how much they purchased at time ¢ € [T]. Note that h; is a signed vector, and we conventionally
denote positive values as buying and negative values as selling throughout. We assume that each
agent has some set of convex constraints on their allowable actions, which we represent by a
feasible set of trajectories G; C R”. For example, if agent i wants to procure at most V; equity



shares without short selling or over-buying, they could represent their constraints via G; = {h; :
0 < S0 hiy <ViVte[T]}. We also assume that each agent has some idiosyncratic utility
function on their strategy, which can capture (1) the utility of their final position and/or any
preferences on their acquisition schedule. For an agent i, we represent this via a concave function
fi:RT - R (with the same units as price)ﬂ For example, if agent ¢ wishes to impose a concave
utility function ¢; on their final position and penalize selling, their idiosyncratic utility could be
fi(hi) = ¢i(1Thy) — ¢, |hig|T{his < O} with ¢ > 0, which is clearly concave. If an agent has a
private valuation 7; for the asset, they could use ¢;(z) = r;z. In settings like compute markets or
optimal trade execution, where the agents’ goal is to acquire a fixed target position as cheaply as
possible, one can set f; = 0 and include a hard constraint on 1" h; in G;. Lastly, and inspired by
the seminal work of Kyle [17], we allow the market to contain a non-strategic (possibly random)
exogenous agent, which captures all non-strategic trade flow. Following convention, the exogenous
agent’s action is given by a signed vector s € R” with positive values indicating buying.

Price Model: Core to understanding how agents strategically interact in acquiring costly re-
sources is how their demand/supply levels influence resource prices. We assume the following
dynamic model for determining resource prices from agents’ trading schedules:

Assumption 1 (Price Dynamics). All agents pay the same price p; for each share of the resource
at time t, where p; is determined from the total trading schedule of all agents up to and including
time t according to the following equations:

pe=p{ +p (Z i + 5t> ;v =pgto (Z hiw + 3t> ; (1)

i=1 =1

where po = py is the initial price, and o, B > 0 are some problem parameters.

The dynamic process for py’ can be seen as a discretization of the Walrasian price dynamics
from general equilibrium theory, which posits that prices evolve from an imbalance of supply and
demand: dp; = a(demand; — supply,)dt, where « is a sensitivity factor [28]. The additional
B (>°"  hig+ s¢) term in py accounts for additional costs imposed by market makers who provide
liquidity to balance supply and demand, causing temporary deviations from the Walrasian price
process (8 controls the strengths of this impact). This also maps to how prices are modeled within
the theory of optimal trade execution, with o and 8 corresponding to permanent and temporary
impact coefficients, respectively [2]. We discuss in detail in Appendix

Game Payoff Structure: We model the total utility for each agent according to their personal
utility f;, minus the total cost they incur buying and selling. Formally:

Definition 1 (Game Payoffs). Let the price parameters py, «, and B, and exogenous action s,
be given. In addition, let h_; denote the trading schedules of all strategic agents other than i,
and p(hi,h_;,po,A\) € RT denote the sequence of prices under Assumption |1| for h;, h_;, and
A=(f1,.--y fu,p0,, B,8). Then, the overall utility for agent i is:

ui(hi;h—i, \) = fi(h;) — p(hi,h_i, X) Th; . (2)

!This allows general concave utility on final position, which corresponds to diminishing marginal utility and is a
natural restriction in economics and game theory. See [19] [11].




We note that these payoff (utility) functions, along with the constraint sets G; for each agent
i, fully define the strategic game for fixed game parameters. In addition, we note that these payoff
functions can easily be shown to be equivalent the linear/quadratic cost cost-function considered
in Chriss [8, 9], in the case where f; = 0 for all ¢; we provide details of this in Appendix

Bayesian Game Extension: In addition to considering fixed instances of the strategic resource
acquisition game, as defined above (which we analyze in detail in Section [3}) we also consider
a Bayesian game extension, where there is uncertainty in the game parameters, and each agent
only observes some private information that may be correlated with these. This is needed for the
partial-information settings we consider in Section [4] and Section

Definition 2 (Bayesian Game). The Bayesian extension of our game is formalized by the following:

1. Market Type: We define the market type as A = (f1,..., fn,Po,, B3,8), as in Definition .

2. Agent Type: We let 0; denote the type of agent i, which is the set of all information known
to them prior to acting. ©; denotes the possible type space for agent i, where |0;| = k; < co.

3. Agent Constraints: Alayer types 0; fully determines their constraints, which we denote G;(6;).

4. Distribution over game instances: Letting T = (61,...,60,,\) denote a full game instance,
there exists a joint probability distribution P(01,...,0,,X) over the components of T.

5. Agent Strategy: In this extended model, the strategy for agent i is a function h; : ©; — RT,
which determines how they would behave under each possible type.

6. Feasible Strategy Sets: We let ‘H; denote the set of feasible strategies for each agent i, which
we formally define as H; = {h : h(0) € G;(6) V0 € ©;,}.

7. Agent Utility: Fach agent i defines their utility given strategy h; and opponent strategies h_;
as the expected utility over T ~ P, which is given by Eg, g . x~p[ui(hi(6:); h—i(0—;), A)].

It is trivial to verify that the goal of all agents maximizing their overall expected utility is
equivalent to each agent maximizing their conditional expected utility given their private infor-
mation, given by Ey_, x.pjg,[wi(hi(0;); h—i(0—;), A)]. In this model, the only requirement of the
agent types 6; is that they specify the agent’s constraints G;(6;). Other that this, the information
specified by the type may be generic; it may either completely determine, be partially correlated
with, or completely uninformative of any given component in A. In particular, we do not generally
assume that 6; specifies f;, since we allow for idiosyncratic utilities to depend on uncertain market
valuations. In addition, the structure of agent types may be generic, but in practice we may often
think of them as defined by some structured set of features that the respective agent uses to decide
their trading schedule. Finally, we note that the types for different agents may have very different
strengths of correlation with other agent types and components of A, which allows for information
asymmetry.

3 Complete Information Setting

In the complete information setting, the market type A and agent constraints Gi,...,G, are
observed by all n strategic agents. Therefore, it is unnecessary to consider agent types or the dis-
tribution P, so we instead just analyze an arbitrary fixed game instance Z defined by G1, ..., Gy, A.

Recall from Section [2| that for fixed game instances, we let h; denote a fixed trading schedule (i.e.
h; € RT) rather than a function of agent types.



Complete information games are routinely studied in game theoretic models, since: (1) they
provide clearer intuitions on the strategic dynamics of the problem; and (2) they are the basis for
common solution concepts, namely Nash Equilibria (NE) and Price of Anarchy (PoA) [25]:

Definition 3. For a complete information instance I, the strategies (h{%, ..., hy!) are a Pure Nash
Equilibrium if and only if: for all buyers i and any strategy h: u;i(h;?; R X) > u;(h}; %% X).

—3 —

Definition 4. For a complete information instance Z, let NE(Z) denote the set of all NE strategies,

and let welf(hi, ... hp, X) =31 uij(hi;h—;, X) denote the welfare function. The Price of Anarchy

. . welf(hy,...,hn,A
ratio is then defined as: Supy, cq, ... h,eGn heac NET) m

Informally, the NE are the set of strategies such that no agent has any incentive to unilaterally
deviate, and the PoA characterizes the ratio of the best obtainable welfare if agents were to coop-
erate to the worst obtainable welfare obtainable from NE. We begin with an explicit expression of
agent utility, which we show to be strictly concave, allowing us to characterize the above notions.
We provide details and derivation of the lemma in Appendix [B]

Lemma 1. By unrolling the auto-regressive price definition in Equation , the utility of agent i
in instance I for joint strategy (hi, ..., hy,) is strictly concave in their strategy, and is given by:

1
ui(hizhi, X) = fi(hi) = 5hi Qhi = Y (Ahg)" hi — sAhi — po(1"hi),
J#
where QQ and A are n X n matrices defined in terms of a and 5, and Q is symmetric and strictly
positive definite (PD).

Our definitions and statements so far have been framed with respect to pure (deterministic)
strategies. In general, strategic agents may use mixed (randomized) strategies, which begs the
following question: could mixed strategies appear in NE? In the following lemma (proof in Ap-
pendix , we answer this question in the negative by characterizing an agent’s best response —
their optimal strategy for a fixed set of others’ strategies — as being pure.

Lemma 2. For any fized game instance I, the best response of any agent i is always unique and
deterministic, even when others are playing some mized (possibly correlated) strategies.

Next, we turn to the first of our two central results in this section, regarding characterization
and computation of the NE, which we address via the following theorem. The proof is technical and
stems from casting the equilibrium conditions as a variational inequality, and then proving that the
operator for this variational inequality is strongly monotone. This proprety immediately implies
uniqueness of the NE, and gives us an efficient gradient-based algorithm algorithm for computing
it. We formalize these results below, with the proof and full algorithm details given in Appendix

Theorem 1. For every fized game instance I, there is a unique pure NE. In addition, the extra-
gradient algorithm [16] converges linearly to this equilibirum.

Finally, we turn to the question of characterizing the PoA, which we show in general is un-
bounded. The proof is based on an explicit counterexample, whose intuition is as follows: consider
two agents with differing valuation on their final position, where one agent wants to buy and other
wants to sell. If they coordinate, they can can provide liquidity to each other, which eliminates
trading frictions and allows them to trade a large quantity and obtain high welfare. However, if
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Figure 1: Cumulative position over time for agents in NE, for fixed a and varying 8. The initial price
is po = 2, the reserve prices are (4,5,6,7,8) and the constraint values are V' = (10, 15, 20, 25, 30).

they agreed to do this, each would have an incentive to cheat by providing less liquidity to the
other; by doing so, the trade imbalance would move the price favorably for them, which they could
profit from. Because of this, the NE involves both agents trading almost nothing, and achieving
very low welfare. We provide full details in Appendix [B]

Theorem 2. For any constants o, 3,1, and any & > 0, there exists an instance I of the complete
information game with PoA ratio at least . Therefore, the PoA is unbounded.

3.1 Empirical Simulations of Equilibrium

To further understand the agents’ behavior in equilibrium, we empirically compute the NE for a
simple, yet practically motivated setting. Consider 5 strategic agents with a linear final position
utility fi(h;) = r; Y, hit for some reserve price r;, and constraints —V; < 1Th; < V; (i.e. final
position must be in range [—V, V]). We randomly sample the actions s; of the exogenous agent using
i.i.d. zero-mean random variables. In Figure [l| we plot the cumulative positions (3"_; hi;) of each
agent 7, for three different sets of problem parameters, where we fix &« = 0.1 and vary 5 € {0.1, 1, 10}.
We observe that, as [ increases, the total volume traded decreases, which is unsurprising since 3
corresponds to trading frictions. More interestingly, we note a phase transition. For small 3, the NE
approaches a pair of block trades — a first at time 0 where all agents purchase an identical quantity
of the resource, and a second at time T" where all agents buy or sell to reach some final position. For
large 3, the NE approaches all agents trading at a constant rate, with some interpolation between
these for intermediate j3.

4 Partial Information Setting with Common Knowledge of Prior

We now consider the partial-information setting: all agents have common knowledge of the joint
distribution P of agent and market types, but each agent only observes their own private information
via their type 6;. For this setting, we only consider characterization and computation of equilibria,
since the unbounded PoA for complete information settings automatically carries over here. As
discussed in Section [, we think of the strategy of each agent as an ez-ante mapping from each
possible type 6; to a feasible trading schedule in G;(6;), which we denote by the function h; € H;.
Game play in this Bayesian setting operates via the following sequence of events: (1) each agent



decides their ez-ante strategy h;; (2) a game instance Z ~ P is sampled and the corresponding
type information 6; is privately revealed to each agent; and (3) each agent executes their strategy
h;(0;). This setting can be formally studied within the Bayesian game theory framework, using the
standard equilibrium notion as follows:

Definition 5 (Bayesian Nash Equilibrium). For a Bayesian instance, the strategies (hi%,... hy!)
are in a Bayesian Nash Equilibrium (BNE) if for all agents i, all b, € H;, and all 6; € ©;, we
have: By, xpjo, [ui(hi?(0:); R (0-:), X)) > Eg_, xvpjp, [ui(Rj(0:); RZ(0-), N)].

As in Section [3| this equilibrium is defined in terms of pure strategies (deterministic trading
schedule for each type). The following lemma, which generalizes Lemma [2| to the Bayesian game
setting, ensures that this restriction does not restrict the BNE (proof details in Appendix |C]).

Lemma 3. For any Bayesian instance, the best response of any agent i is always unique and
deterministic (meaning trading schedule h;(0;) for every type 0; is deterministic), even if others are
playing some mized (possibly correlated) set of strategies for each type.

We now present the central result in this setting. Theorem [3| generalizes the result of Theorem
to the Bayesian game setting, namely that there is a unique and efficiently computable equilibrium.
Similar to the complete information setting, this follows by casting the equilibrium problem as a
variational inequality, which we show is strongly monotone; this implies uniqueness of the BNE, and
gives an efficient gradient based algorithm for computing it. We provide full details in Appendix [C|

Theorem 3. For every Bayesian game instance (given by distribution P ), there is a unique pure
BNE, and the extra-gradient algorithm [16] converges linearly to this BNE.

4.1 Empirical Simulations of Equilibrium

We simulate the BNE for a similar scenario as in Section where agents’ have linear utility and
inequality constraints on their final positions. We use 2 agents here, each with 3 possible types, and
the type 6; determines the final position bounds V; and expected reserve price r; for each agent. We
set s = 0 in this simulation. As before, we fix a = 0.1, and vary 3; in each case, [ is continuously
distributed within some bounded range. We provide full details in Appendix [C]

We see similar phase transition dynamics as we vary 3 from small to large as we observed in the
complete information setting. However, in this case, since the cumulative positions in each agent’s
strategy are type-dependent, the strategies do not consistently overlap during early time steps.
That is, the partial information induces a richer, type-dependent dynamic. However, we do observe
overlap in trade execution between some pairs of types for the two agents, which is interesting and
warrants exploration in future work.

5 Partial Information Setting with no Prior via Online Learning

We now move to a more realistic setting, where agents neither have complete information, nor
any a priori knowledge of the prior P. Instead, in this setting agents must learn via interaction.
Specifically, we consider a mode of repeated game play that occurs over R € NT rounds, where
in each round r the game play follows the sequence of events for Bayesian game play described in
Section {4] and the ex-ante strategy h; that each agent ¢ selects in round r is chosen adaptive to
their feedback following rounds 1 through r — 1. The feedback that each agent observes after each
round is formalized by the following assumption:



a =0.1, 8 € [0.075,0.125] a=0.1,8 € [0.75,1.25] a=0.1,3 € [7.5,12.5]

Agent 0; 6 = 10
30 30 307 —— Agent 0;6p = 15
—— Agent 0; o = 20

//\ Agent 1; 6; = 20
Agent 1; ; = 25

20 = 20 20
/_( \ Agent 1; 6, = 30
101 | 10 . 10

f

Agent 0; 6 = 10 Agent 0; 6 = 10

Cumulative Position

0 —— Agent 0; 6 = 15 0 —— Agent 0; 6 = 15 0
—— Agent 0; 6 = 20 —— Agent 0; 6 = 20
Agent 1; 6; = 20 Agent 1; 6; = 20
.0, = 25 P
10 Agent ;6 =25 | o Agent 1; 6, =25 | o
Agent 1; 67 = 30 Agent 1; 6; = 30
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100

Time Time Time
Figure 2: Cumulative position over time for agents under the BNE. Types are distributed uniformly
and correspond to the constraint V. The type conditioned expected reserves are (3,5,7) for agent
1, and (6, 8,10) for agent 2. pg = 0, = 0.1 and the conditional 3 lies in the given range.

Assumption 2 (End of Round Feedback). Let h] and 6] denote the ex-ante strategy and sampled
type for each agent i in round r, and let A" denote the sampled market type. Then, at the end of
round r, each agent observes the cost function c : H; — R as feedback, given by

ci(hi) = —u;(hi(0;); RZ;(07;), A") .

This feedback is the cost (negative utility) that the agent would have received if they had
commited to a different strategy in that round, letting the strategies of all other agents and game
instance be fixed. Although technically ¢} could be written in a slightly simpler way with domain
Gi(07) rather than H;, the latter is more convenient as it ensures that ¢ is defined on the same
domain for all » € [R]. In many applications, the cost function ¢ could be inferred by performing
some regressions on observed market data to compute the sequence of aggregate outside demands
> ki hj: + s¢ along with o and 8. Finally, although we assume that agents observe the full cost
function ¢}, in practice many algorithms only require the gradient Vhlr(gir)cg(h;”), so in practice this
assumption could be loosened. In particular, this is the case for the algorithm of Jordan et al. [14]
discussed below.

To obtain concrete guarantees, we impose some boundedness regularity conditions, which are
restrictions on the constraint sets, distribution over exogenous actions, and idiosyncratic utilities.

Assumption 3 (Boundedness). We assume that there exists some finite, fixed values B, S, U,
and U’, such that for all agents i € [n] and strategies h; € H;, the following bounds hold almost
surely: (1) |hi(6:)ll2 < B; (2) |Isll2 < S; (3) | fi(hi(0:))| < U; and (4) ||V fi(hi(6:))|]2 < U".

Next, we define an (unobserved) population loss for each agent ¢ in any given round r, as follows:

Definition 6 (Population Loss). Let h] denote the ex-ante strategies of agent i in round r for all
i. Then, the expected loss for each agent i in round r is a function (] : H; — R given by:

li(hi) = Eg, o_; xvp[—ui(hi(0:); hi (6-:), A)] -

In other words, ¢} (h;) = Ez.p[c](h;)] for all h; € H;; likewise for its derivatives. Therefore,
the observed losses ¢} or their gradients can be interpreted as unbiased stochastic estimates of
the population losses ¢} or their gradients respectively. It is easy to see that if h] minimizes
07 for every agent i simultaneously in some round 7, then the agents are in BNE. Therefore,



this intuitively suggests that we could apply existing theory and algorithms for online convex
optimization with stochastic feedback to establish convergence to equilibrium. We proceed by
formalizing this intuition. First, we define some additional central concepts:

Definition 7 (Regret). Fiz a agent i € [n] and a sequence of loss functions x; : H; — R for
r € [R]. For any sequence of strategies h] for r € [R], we define their (average) regret as

R R
1 1
vegret(hi, . By Xis - X0) = 5 ) xi(hi) = min =% xj(hi)
r=1 ¢ v r=1

Definition 8 (e-BCCE). Let 0 € A(H1 X ... X Hy,) be a joint distribution over strategy profiles.
Then, o is an e-approximate Bayesian coarse correlated equilibrium (e-BCCE) if and only if for all
agents i, 0; € ©;, and hl, € H;:

Enyh ino0 i aoplos[wi(Ri(05), h_i(0-3), A)] > Ep_, o0, auppo; [wi(R;(0:), h_i(0_;),X)] — €

Regret measures how much we could decrease our average loss by if, retrospectively, we swapped
from the actual sequence of chosen strategies to some fixed alternative strategy. No-regret algorithms
are well studied in the online learning literature; these are algorithms that ensure that the average
regret converges to zero under arbitrarily (possibly adversarially) chosen loss functions. On the
other hand, approximate BCCE is a weaker equilibrium notion than BNE, in two respects: (1) it
allows for correlation between the strategies in equilibrium; and (2) it allows for e-sub-optimality
of the chosen strategies (in conditional expectation given 6;).

Although no-regret algorithms and BCCE may seem like unrelated ideas at first, they are deeply
connected since multiple agents simultaneously following no-regret dynamics with a fixed game
objective will induce an approximate coarse correlated equilibrium (CCE) in the game. Although
we are considering Bayesian games and BCCE rather than CCE, similar reasoning gives us the
following theorem (proof in Appendix @[)

Theorem 4. Suppose every agent i € [n| selects their strategy h] at each round r via some on-
line algorithm Alg;, with the following properties: (1) Alg; selects strategy hl at round i only
using unbiased stochastic cost-function observations X~: for some true sequence of cost functions
X; € Ci, where C; is a set containing all population losses C] almost surely; (2) it ensures that
regret(hl, ... hE xL ... xf) < €(R) for some € (R) that is independent of the cost functions
X! € C;, which could be adversarially chosen. In addition, let oft € A(Hy x ... x H,) denote the

uniform distribution over (hY,... h%) across rounds. Then, o' is an e-BCCE, for some € that is
bounded by ;ir((g)) for alli € [n],0; € ©,.

We make a few comments on this theorem. First, we note that it is very general, and establishes
convergence to equilbria for agents who simultaneously engage in no-regret learning using any
stochstic-feedback no regret-learning algorithm with thier observed costs ¢}, and the algorithms
could be different for each agent. Second, the restriction of losses in the theorem statements to
some sets C; is necessary since adversarial no-regret will generally be impossible without some
bounds on the allowed stochastic/true losses. In general, the constants involved in the regrets
€;(R) obtainable by a given algorithm may depend on C;, the choice of which in practice will
depend on the bounds we can place on ¢ and /. Finally, the dependence of the result on the
worst-case 1/ Pr(6;) arises from bounding the conditional sub-optimality in the definition of BCCE
uniformly over all i and 6;. For any given i, 6;, we can bound this sub-optimality by €;(R)/ Pr(6;),

10



so the presence of rarely-occurring types don’t cause sub-optimality conditional on common types
to suffer, and the average sub-optimality over all types is bounded by ¢€;(R) (see proof for details).

Although the guarantees from Theorem [ are slightly weak in that they only ensure approximate
convergence to a BCCE for the average-iterate strategy, not for the final iterate h%,... hl we can
do better if all agents apply a doubly optimal algorithm [14], which is an algorithm that ensures
no-regret, as well as last-iterate convergence to a NE if applied by all agents in a strongly monotone
game with stochastic gradient feedback. The specific algorithm proposed by Jordan et al. [14] that
obtains this property is online gradient descent (OGD) [30] with a specific stochastic scheme for
reducing learning rates. We provide details of this algorithm (Alg.[2)) and its theoretical guarantees
in Appendix The following theorem establishes that, if all agents independently follow this
algorithm, their joint strategy profile converges to the BNE.

Theorem 5. Suppose all agents use Alg. [q to decide their strategy in each round r. Then, letting
k = max;c ] |©;, the final iterate strategies hi,... hE are an e-approzimate BNE, for some € that
satisfies the following in expectation over the algorithm’s randomness:

pOIY(n,T,/{7(){,B,pO,B,S’ U/) 10g3/2(R)
Ele] = O . .
Minje[n) 0,c0, P1(0:) VR

Even though this result only establishes convergence to BNE if all agents follow it, by the doubly
optimal property discussed above it is no-regret. Thus, the algorithm is also robust to possibly ad-
versarial environments. Compared with the extra-gradient algorithm (which we previously showed
can efficiently compute the BNE), the benefits of Alg.|2|are two-fold: (1) each agent’s learning pro-
cedure is prior-independent, since to update their strategies they only need gradient information
about their realized cost; and (2) the procedure is fully decentralized, since agents can run their
learning algorithms independently using only the information privately revealed to them. As with
Theorem {4} our result depends on the worst-case 1/ Pr(6;), but the same comments we made there
apply about how this is not a major theoretical limitation. We finally note that the above concept
of double optimality is very new, and it is possible that other decentralized algorithms could obtain
similar guarantees, but this is a question for future research.

5.1 Simulations

We conclude with an empirical investigation on convergence to equilibrium in actual implementa-
tion, simulating repeated play as described in Section [5] where all agents follow Alg. 2] We use the
same Bayesian game instance as in Section with 2 agents, each having 3 possible types. We
provide full details of this simulation setting in Appendix [D.4]

We show the results of this simulation in Figure On the left we directly compare the final
iterate strategies from online learning with the BNE. We see that these almost exactly overlap, with
only very minor discrepancies, which can be explained by noise in the observed market parameters.
On the right we plot the convergence of the agent strategies during online learning to the BNE
strategies in terms of mean-squared error (MSE); we see that the MSE very rapidly approaches 0,
even faster than guaranteed by our theory. Overall, these results are a strong empirical validation
of Theorem [5

11
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Figure 3: Comparison of Alg. [2| (over 500 rounds) to exact BNE strategies: (left) we plot the
last-iterate strategies returned by Alg. [2] (solid lines) along with the true BNE (dashed lines) for all
agents and types; and (right) we show the convergence in mean-squared error between the strategies
from Alg. [2] and the BNE over the 500 rounds.
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Statement on Usage of LLMs

We used LLM tools for the purpose of checking language use in writing our paper, as well as a tool
for suggesting relevant existing results when conducting our research (in particular, for exploring
existing results related to uniqueness of Nash Equilibria, for which it suggested reading literature /
existing results on variational inequalities.) However, all proofs were derived and written completely
by the authors, and the paper was written completely by the authors (outside of the usage of LLMs
for language checking as mentioned above.)

A Additional Model Discussion

A.1 Derivation of Price Model

First, we discuss in more detail how our price dynamics in Assumption [I] relate to Walrasian price
dynamics. As mentioned in Section [2] this model positions that (mean) prices evolve according to
the continuous time differential equation

dp; = a(demand; — supply,)dt,

for some price-sensitivity factor . Given this, the dynamic model for pi’ can be viewed as a
discretization of this process. In addition, allowing for noise in s;, this turns it into a discretization
of the corresponding stochastic differential equation

dp; = a(demand; — supply,)dt + odW,

for some noise process dW; (e.g. Brownian motion). The actual price that traders must pay
differs from this Walrasian process by amount 3(>_" | hi; + s¢). We can interpret this difference
as a temporary (instantaneous) price adjustment from p}’ driven by the imbalance of supply and
demand; when supply and demand are not balanced, the difference must be met by market makers,
who provide liquidity. These market makers require some spread from p}” in order to account for the
risk they take by providing liquidity. For example, if demand outstrips supply at time ¢, the market
makers will balance this by selling an equal amount at a slight premium; hence, the instantaneous
market price p; will be slightly higher than p;”. We implicitly assume as part of Assumption [I] that
this difference is linear in the imbalance ;" | h;; + s¢, with coefficient .

Alternatively, this model can also be justified from the literature on market impact. For ex-
ample, the seminal model of Almgren and Chriss [2], which is the basis for much of the classical
theory on (non-strategic) optimal trade execution, posits almost exactly the same model for price
impact from trade execution over time, except that they consider a slightly more general offset
based on supply and demand imbalance of the kind (3 ;" | hit + s¢), for some concave function
¢ : RT — R*. Therefore, our price model is equivalent to theirs in the case of ¥(z) = Bx. We
note that empirical research (see e.g. Almgren et al. [3]) suggests power-law models of the kind
Y(x) = BzY with v =~ 3/5 to be well supported by real data. Such a model would be more chal-
lenging to study under strategic interaction, as it could break strong monotonicity without some
additional assumptions on f; and/or G;; we leave the investigation of alternative price models like
this to future work.
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A.2 Relation of Model to Existing Models

Here, we make some concrete comparisons of our model with the models used in the recent lines of
work on position building under competition Chriss [8, [0, [7, 0], Kearns and Shi [15].

Relation to Existing Discrete Time Model First, consider the special case of our model
with no idiosyncratic utilities (f; = 0 for all ), and no exogenous actions (s = 0). In this case, we
can re-formulate the objective for each agent as minimizing a cost function ¢;(h;, h_;) given by the
negative of the utility u;, which if we unroll the autoregressive price definitions like in the proof of
Lemma [} we can easily verify is given by

T t n T n T
ci(hi;h_;) =« Z hi ¢ Z Z hji+ 3 Z hi Z hj¢ + Z hi ¢po
—1 —1 =1

=1 =1 j=1

Now, assume further that the constraints GG; contains a constraint of the kind Z;le hit = V; for
some fixed V;. Then, the third term above can be ignored, as it is always equal to pyV; for any
feasible h; € G;. Given this, and with some slight re-arranging of terms, we have that the cost
structure is given by

T n

T n
ci(hiyh_;) =« Z it Z Tjt1+ (a+B) Z hiy Z hjt
t=1 j=1 t=1 J=1

where we define
t
Tit = Z hz‘,l
=1

as the cumulative position acquired by agent i over the first ¢ time steps. This corresponds exactly
to the kind of cost structure assumed in Kearns and Shi [I5], who considered a discrete time version
of optimal position building, with cost function

T n T n
oS(hithi) =6 hig > xje1+ > hig Y hjs.
t=1 j=1 t=1 j=1

Following terminology for literature on optimal position building, they denote first term as the
permanent-impact cost, and the second term as the temporary-impact cost, with permanent-impact
coefficient , and unit temporary-impact coefficient (which is completely general up to normalization
of cost). Therefore, if we normalize our cost by a+ 3, we see that under the above model restrictions
it recovers theirs with k = a/(a + ).

Although our model may seem less general given the above reduction, as they allow for any
k > 0 but ours only allows k € [0,1], we argue that this restriction does not have much or any
material impact in practice. First, as discussed in Kearns and Shi [15], if they decompose their cost
into zero-sum and potential (i.e. congestion game-style cost) components, the coefficient in front
of potential cost becomes negative when s > 2. This implies that agents are rewarded rather than
punished from congestion of their trading schedule, which therefore encourages agents to behave
as aggressively as their constraints will allow (this is reflected e.g. in the unstable dynamics they
observe when agents play no-regret with x > 2). Given this, we would probably wish to restrict to
k < 2 in such a discrete model in practice. Second, and perhaps more importantly, to the extent
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that their model is justified as a discretization of the continuous time model discussed below, the
convergence of this discretization as we make it more and more fine-grained only works if we let the
ratio of temporary-impact-coefficient to permanent-impact-coefficient (i.e. k) tend towards zero as
T — oo. Therefore, no matter the target x value in the continuous-time cost cyc defined below,
the corresponding x in the discrete-time cost cZKS that approximates this will be less than 1 if the
discretization is sufficiently fine-grained.

Relation to Existing Continuous Time Model The works by Chriss [8, [9] [7, [I0] consider a
continuous-time version of this problem, where the strategies h; are functions over some continuous
time range (which they normalize to be [0, 1] without loss of generality). In this setting, we assume
the strategies are defined by functions h; : [0,1] — R, where h;(¢) is their instantaneous trading
rate at time t. We also define @; implicitly in terms of h; as the total accumulated position up to
time ¢, which is mathematically given by

Then, the assumed cost structure is

n

NC ! * !
NC(hish_y) = & /0 hi<t>jzlmi<t>dt+ /0 hi(t) Y hy(t)dt,

J=1

which is the continuous-time analogue of the cost structure based on decomposition into permanent-
impact cost and temporary-impact cost mentioned aboveE|

Now, suppose we are given a problem instance of this continuous time model, with k given, and
time normalized into range [0,1]. We can approximate this arbitrarily well with a discrete time
model as T' — oo, by letting the discrete time grid correspond to {%, %, ... 1} in continuous time.
Specifically, we can do this as follows: suppose we are given collection of continuous-time strategies

{,...,h{, and define

(2

t
xi(t) = / h$(1)dl (for continuous ¢ € [0, 1])
0

)

Tip = Ty (;) (for discrete t € [T7)

hit =it — Tit—1 (for discrete ¢ € [T1).

)

2In reality, historically this continuous time model was the original one and the above discrete time version was
introduced later, but we present in opposite order since our model is discrete-time.
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Then, our discrete-time cost structure in terms of these stragegy vectors h; will be given by

T

T n "
c?’B’T(hi; h_i) =« Z hi ¢ Z Zji-1+ (0 + f) Z his Z it
t=1  j=1 =1 J=
d C t c t B 1 g C t — 1
-3 {ai(p) = (F) e ()

) =1
o) () £ o) -}
= azT: %’%c(w) imj (%)

t=1 j=1
() S (),

where the final line follows from the mean-value theorem, where v;; € (0,1) for all ¢,¢. Therefore,
if we consider a sequence of discrete problem instances with o = k and 8 =T, we get

NTT C ’Vzt c t_l
) = g () S ()

+TIEI;O<H+T> th< %t)th< m)
:m/o1 hf(t)jzn;azf(t)dt—k/o hg(t);h;r(t)dt

where first equality plugs in the above result with o = x and 8 = T, and the second follows from
product of limits and the definition of the Riemann integral. Therefore, under appropriate re-
normalization of the ratio 5/« as we make the discrete-time approximation more fine-grained, our
model can approximate the existing continuous time cost structure considered in Chriss [8 9] [7], [10]
arbitrarily well if we let T — oo. Therefore, our model on the above restriction on idiosyncratic
utilities, constraints, and exogenous actions subsumes theirs up to a vanishing discretization error.

+(a+5)

Mﬂﬂ

t

1
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B Proofs for Section [3

Proof of Lemma [1k

We first unroll the auto-regressive nature of the Walrasian price dynamic p}’. Observe that the
following holds:

P11U=P0+042hj71+as1 ;
J
pé“zpo—i-aZth—i-Ozsl—i—aZhj,g—kasQ;
J J

The execution price an agent pays is also influenced by the temporary impact. Combining this

with the above, we can write the net cost an agent ¢ faces as follows: u;(hi,...,hy, A)
T t T n
zhmpo—azzhmm—a zhi,t<zhj,z+86>-,azhi,t(zhjmt)
t=1 ¢=1 =1 ¢=1 i t=1 j=1

= f;(h;) — a Z <h§t + hig Z hi,g> - B Z hi,
t=1 (=1 t=1

quadratic terms

_azhztzzhjé_Bzhztzhjt_azhztzsf Bzhztst Zpohzt

t=1 =1 j#i t=1 j#i t=1

/

linear terms o< other agent linear term o exogenous agent

Focusing on the quadratic terms, it suffices to compute the Hessian, denoted by ). Note that
Qi+ = 2a + 2. As for the off-diagonal values, these are composed entirely of «. Indeed, for any
t1 # to, we have that @y, ;, = a. Next, we consider the linear terms that are proportional to other
agents. We wish to express it in the following form: ., (Ah;(0;))T hi(0;). For a given t, consider
the first of the two linear terms proportional to others. For any j, observe that h;;(6;) is multiplied
by ah;i(0;),...ahj1(0;). As for the second term, it multiplies h;((6;) with Bh;(6;). Hence, we
conclude that A is a lower-triangular matrix, whose diagonals are oo + 8 and the remaining values
are a. As for the linear term with respect to the exogenous agent, it follows a similar pattern, and
we can express it as (As)Th;. We thus have the following expression for the matrices Q and A:

@ ifi<y 0 ifi<y
Qij=2a+20 ifi=j ; Ajj=Ca+p ifi=j ;
« ifi>j o ifi>j

Since @ is a symmetric matrix that can be written as Q = aJ + (a4 23)I where J is the all 1s
matrix and [ the identity matrix. Observe that for any z, we have that:

T 2
tTQx = (a+28) (2" Iz) + a(zT Jz) = (a+28) (2" z) + alz? Jz) = (a+28)||z||3 + ( Z xz) >0
i=1
where the strict inequality holds since the parameters «, 8 are non-negative and & # 0. In other

words, the ) matrix is positive definite and thus the utility of each agent, in terms of their own
strategy, is a strictly concave function.
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Proof of Lemma [2]

Proof. Consider an agent ¢ and suppose all other agents are playing a mixed and possibly correlated
strategy, denoted by o_;. Buyer ¢ can choose to best-respond with a mixed strategy of their own,
denoted p;(h). Without loss of generality, we set pg = 0 and observe that:

bri(o_s) = arg max /h | p(hi)< fi(hi) — sAh; — / o(h_)[hT Qhi + 3 Ahj)Thi]dh_i>dhi

pEA(GZ) h_; _7757,
= arg max/ p(hi) | fi(hi) — hiTQhZ- — sAh; — (/ o(h_;) Z(Ahj)Tdh_,) hz} dh;
PEA(G;) Jhy L h—i G
T

Vi

—argmax [ p(hi)|fi(hi) ~ BT Qhs — o7 b sAh,] dh;
PEA(G;) Jh;y L

= arg max {fz(hz) —h'Qh — v  h; — sAhz}
h;eG;

where the last equality follows from the linearity of expectation. The resulting maximization

expression has a sole quadratic term: hzTth. From Lemma [If we know @ is a PD matrix. Thus,

the best-response optimization, to both pure or mixed strategies of others, is strictly concave, and

there is a unique solution.

Interestingly, this result implies that in the complete information setting, any coarse correlated
equilibrium (CCE) must also be a Nash. Indeed, for any o to be a CCE, each agent’s strategy
must be pure (otherwise there is a deviating pure strategy that is a best response for any mixed
strategy of others). A CCE with pure strategy is the same as Nash. O

B.1 Proof of Theorem [

Proof. Uniqueness: From [2| we know that each agent’s best response is a concave optimization
problem over a convex region G;. In this proof, we shall express the agent’s objective from a
cost minimization perspective — i.e. ¢;(h;;h_j,A) = —u;(h;; h_;, X). As such, the best response
objective will be convex. Formally (again setting pg = 0 for ease of exposition):

1 .
bri(h_;) = argmin ~h! Qh; + Z(Ahj)Thi + sAh; — fi(h;) := argmin¢;(h;; h_;, A)
h;eG; 2 Y h;eG;
JF
At a best response for agent i, h}, it must be that for all Vh; € G; : (Vp,ci(h;h_;),(hi—h})) > 0;
otherwise, the agent could move in that direction and decrease their net cost. This is a standard
equivalence between a convex optimization and variational inequalities (see Rockafellar and Wets
[23]). At a Nash Equilibrium, each buyer ¢ must be playing their best response, given the strategies
of other agents. Thus, we are looking for a set of trajectories (h{’,..., hy3!) such that:

Vi, ¥(R1, ... hy) € Ry X - % Ry (Vi,ei(hSS %), (hy — hS9) > 0 (3)

Indeed, any tuple (h{?, ..., hy!) that satisfies the above must be a Nash Equilibrium. Observe that
¢; is the sum of a quadratic function and a convex term. The gradient of ¢; is then as follows:

Vhici(h;; h_i) = Qh;k + Z Ahj 4+ As — thfz(hz)
J#i
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Ignoring the Vp, fi(h;) term, the gradient is a linear function of all agent strategies. Denoting
x = [hi,...,h,]T as the concatenation of agent strategies and s as a constant (since this is not
from a strategic agent), the variational inequality that characterizes the Nash Equilibrium can
thus written with an operator F(x) = Mx + b — [V, fi(h1),...Vy, fi(hy,)]. That is, a set of
strategies ® = [h{%, ... hy!] is a Nash Equilibrium if and only if, for all ® € Ry X ..., xXRy:
(F(x), (x —x?)) > 0. We note the following:

Definition 9 (]23]). An operator F is called strongly monotone on a set X if and only if there
exists a scaler ¢ such that:

(F(x) — F(x)), (x — ') > c||e — ||, Ve, z0€ X

From [23], we note that a variational inequality with a strongly monotone operator has a unique
solution. Here, this implies a unique Nash Equilibrium. For our operator F"

n
(F(z) - F(@'),(x —a) = (M(z - 2),(® —a')) = Y (Vn,filhi) = Vi fi(h7), (hi — b))

i=1
As such, it suffices to show that for positive ¢: (M(z — z'), (x — x')) > ¢||x — «'||*> and for all :
—(Vn, fi(hi) = Vi fi(R}), (h; — h})) > 0. It is known that for convex functions, their gradient is
a monotone operaéor. Thus, f; being concave (and thus — f; is convex) and the desired condition
immediately holds. As such, it suffices to prove the strong monotonicity of the linear operator M
and show that for any x: (Mx,z) = ' Mx > c||x||?>. The matrix M is given by the following
block matrix:

QeRTXT AcRT*T | AecRTXT
u AeRT>XT QeRT*T .. AeRTXT @
= . . : . 4
AG]RTXT AERTXT QGRTXT

We first note that while our matrix M may not symmetric, we can always write it as the sum of
a symmetric component My = 3(M + MT) and a skew-symmetric component M, = $(M — MT).
By definition, Mg = —Mj. This means that for any & where s = x” Myx: s = sT = (27 Mx)" =
—a"Myx = —s. Thus, 27 Mpx = 0 and it suffices to only consider the symmetric component
My for the strong monotonicity condition. Now suppose M is a positive definite matrix. Then
we can always diagonalize it as PAPT, where A is a diagonal matrix of positive eigenvalues and
PPT = PTP = ]. Then we can also express any € = Py for some y. Then under this PD
condition, we have:

' Mz = y" PTPAPT Py = y" Ay
> Mnin (M) (PT2)T(PTx) = Apin(My)xT PPTx = \ppin (M) || |2

In other words, if My is positive definite, we can choose ¢ = A\pin(Ms) > 0 and satisfy the conditions
of strong monotonicity. The matrix My is an n X n block matrix with @) on the diagonal and all
other elements being A = %(A + AT). This can be succinctly represented using the Kronecker
product (recall J,, is an n x n all 1s matrix):

Ms:In®(Q_As)+Jn®As (5)

Note that the all 1s matrix is positive-definite with one eigenvalue of (n—1) and all other eigenvalues
0. Therefore, we can write A; = U”.J,U, where A, = diag(n,0,...0). Let P = U ® I, and note
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that PTP = (UT ® I7)(U ® It) = UTU ® It = I,,7, where we use the mixed product property
of Kronecker products. We shall be using P to diagonalize (in the block sense) the matrix M.
Specifically, observe that due to the mixed product rule:

PTM,P =PT(I,®Q — A,)P + PT(J, ® A,)P
=UT@IT)1,®Q — A) (U Ir) + (U @ IT)(J, ® As)(U @ I7)
= (UTLU @ I7(Q — Ag)Ir) + (U J,U @ IT AIr)
= ®(Q—As)) + (A, ® As)

The first summand is a block diagonal matrix with () — A5 in each entry, and the second
summand is also block diagonal with nAy in the first entry and 0 elsewhere. Therefore, PT MqP
results in a block diagonal matrix diag(Qs+ (n —1)Ag, As, ..., Q — As). The eigenvalues of My are
the eigenvalues of this block diagonal matrix, which in turn are the eigenvalues of each matrix in
the diagonal. Thus, we need to show that @+ (n—1)A, and @ — A, both have positive eigenvalues.
Note that @ = (a + 28)Ir + aJp and Ay = ($ + B)Ir + $Jr. Thus, for any x € RT:

T 2
2T (Q — Azt =T [(3‘ +b)Ir + g‘JT] x=(5+ balz + g(th) >0
t=1

2" (Q+ (n— 1)A)z" =2 [(n +1)(5 +0)Ir + (n+ 1);&74 x

T

2
= (n+1)(§+b)xTx+(n+1)g‘<Z:ct> >0

t=1

as long as either « > 0 or 8 > 0. Since these diagonal matrices are positive definite, they have
positive eigenvalues, implying M, has positive eigenvalues, implying strong monotonicity of the
simultaneous best response operator, implying uniqueness of the equilibrium.

Linear Convergence:

Algorithm 1: Extra-Gradient Algorithm
Input: Game Instance Z, Variational Operator F, step-size 7
Randomly Initialize a feasible joint strategy xo = (hi, ..., hy,)
while ||z, — z,_1|| < e do
x,41/2 = Projg, xq, (vr — nF(x))
xr 11 = Projg, wa, (2r — NF(2,41/2))

Theorem 3.4 of Wadia et al. [27] states that for any c-strongly monotone and L-Lipshcitz
operator, the extragradient algorithm (Algorithm |[1) with step-size n = ﬁ converges to the
fixed point at a linear rate of 1 — ;7. We have shown above that our given operator is ¢ =
Amin (M) strongly monotone. As for Lipschitzness, note that our operator can be decomposed as:
F(x) = Mz +b— J(x), where J(x) = [Vh,f1,...,Vh, fa]'. Lipschitz constants for the sum of
two maps add; thus, it suffices to solve for the Lipschitz constants for the linear operator M, L

and the gradient operator J, L.

Any linear operator is lipschitz — in fact, the Lipschitz constant is just the 2-norm of the matrix
M. For any matrix, the following is always true: |[M||2 < /||M]||1||M]|s, Where ||M]]; is the
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largest absolute column sum and || M || is the largest absolute row sum. In our specific matrix M,
observe that:

1My = [[M]loo = 20 +28) + (T = Da+ (n=D[(T - Da+a+ ] = (0T +Da+(n+1)5 > ||M]||

Thus, Ly = (nT + 1)a+ (n + 1)8 is a suitable bound for the M operator Lipschitz constant.
Secondly, for any i, observe that since f; is concave, the operator Vy, fi is L; = sup, Amaz(—Vh, fi)
lipschitz. Further, observe that:

1 (@) = J@)P = Y [|Vh, filhi) = Vi fi(R))|* < max L; >l = hil* = max Lillz — a'||”
i=1 =1

Therefore, L ; = max; L; and the overall Lipschitz constant is L j+Ljys = max; sup, Amaz(—Va, fi)+
(nT+1a+ (n+1)p. O

B.2 Proof of Theorem [2

Proof. Suppose there are n = 2 agents and we have some constant values of a;, § — one can assume,
without loss of generality, that « = 8 = IEL Let the final position utility for both agents be given
by the following linear function: u;(h;) = r; >, hi s, where r; can be interpreted as the reserve/fair-
market price as perceived by agent ¢. Further, the two have box constraints on their cumulative
position: V,7 <> hiy < Vf. We shall assume the exogenous agent is not present —i.e. s = 0.

For a positive constant z, let the initial price pg = x and the reserve prices for the agents be
(ri = x,79 = x —¢), where ¢ > 0. We first consider the equilibrium of this game without any
constraints. Then each agent’s best response is given by:

bri(hg) = arg max{ — %thth — (Ahg)Thl} (6)
h1

bri(hy) = arg max{ —e1Th, - %hQTQhQ — (Ahl)Thg} (7)
ho

Observe that at the equilibrium of this unconstrained game, the gradient of both agents’ best
responses must be 0. Since this is a quadratic function, the gradient is linear, and the equilibrium
can be uniquely specified by the following system of linear equalities:

Gd -l

Matrix M € R2Tx2T z€R2T

Recall that the matrices @, A are specified using only the terms «, 5. In lemma [2] we noted that
Q is a positive-definite matrix and thus invertible. The matrix A is a lower triangular matrix with
a+ (3 on the diagonals and is thus also invertible (insofar as & > 0 or 8 > 0). As such, the matrix
M above is invertible and the unconstrained equilibrium strategy is given by M ~'z. Note that
this does not depend on the value of x. Further, if V;” < —||[M~1z||; and V;" > ||[M~1z||;, then
this unconstrained equilibrium is also an equilibrium in the original constrained game. As for the

3Insofar as a, 3 are constants and not scaling with respect to the ¢ all results will hold.
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strategy itself, let m;; denote the values of —M ~1 and note that m;j can be seen as a scaler with
respect to €. Then we have that:

2T 2T
hlt =£ E my g and hgt =& E MmTit,j (8)
=T Jj=T

Given that the value of the final position is simply the product of the total amount bought and the
reserve, the utility of buyer 1 (with reserve x) is:

T or o t or or
=zey Y mi— E b M jE <x+0<5 > D (mpjmrirg) + fe Y muy +mT+t,j>]
t=1 j=T t=1 Lj=T r=1j=T J=T
o bt price p;
T 2T t
2
E E my ;€ ( g g (mrj +mrgrj) + 5 E (myj +mT+t,])>‘ O(e%)
t=1 j=T T=1j=T

where the absolute value in the second line follows, since utility at equilibrium will always be non-
negative (the agents not trading would get utility 0, so utility at equilibrium must be at least 0).
A similar analysis leads us to show that the utility of the second agent (with reserve z — ¢) is also
bounded by ©(e?), allowing us to conclude that the welfare at equilibrium is O(£?). Formally:

T 2T T 2T t
eq_‘ ZZZmT+t’J ZZmTH,ﬁ ( ZZ m7]+mT+m +BZ mt]—i-mTth,]))'

t=1 j=T t=1 =T T=14j=T

We now turn to characterizing the optimal welfare of this instance. For some § > 0 (to be spec-
ified later), consider the following trajectories for each buyer (recall positive values mean buying):

h, =[z,2,0,...,0] and hg=[-z—0,—z—94,0,...,0] (9)

Insofar as Vﬁ > 2x and V;© < —2x — 4, the trajectories above are feasible. Under this strategy,
it suffices to consider the prices at rounds ¢t = 1,2, for which we have that: p; = r — ad — 8 and
p2 = x — 2ad — $6. Then the utilities for each buyer is given by:

up =x -2z —x(x — ad — ) — z(x — 2ad — B6) = 3adx + 260z
ug = (x —e)(—2x —6) + (x + 0)(x — ad — BI) + (x + 0)(z — 2§ — 9)
= 2ex + 20e — 3adx — 3ad® — 285z — 235>
— w4 U > 2ex 4 206 — 3% — 262 = 2xe + 206 — (3o + 2)62
This gives a concave quadratic (in the unspecified parameter §) lower bound on the optimal utility.

Maximizing it means choosing a § such that the gradient is O:

2e2 g2 2

€ opt opt €
= = uy; +u; > 2xe+ — =2xe+ ——— = O(ac
3o+ 243 ! 3a+28 3a+ 20 3a+ 26 (ze)

From here, it is evident that for any constants «, 8 and x, we can construct an € > 0 parametrized

instance Z. with box constraints V" < min(—||M~tz||, -2z — 26) and V;" > max(||Mz||,2x)

with the aforementioned § = 5 +2 30128 such that:
Uo t(I ) Q(g) <1)
PoA(Z.) = =2 > =Q(-) >0 ase—0 10
)= T@) ~ o~ O\: (10)
O
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C Proofs and Details For Section 4

C.1 Proof of Lemma 3

Proof. In the most general sense, observe that agent i’s best response for a realized type 6; allows
them to play a mixed strategy over all valid strategies: p;(h;|0;), where h; is a vector in RT since the
probability is already conditioned on ;. Suppose the remaining agents are playing some mixed,
possibly correlated strategy o_;, where o_;(h_;|0_;) denotes the probability that the remaining
agents play strategy h_; € R_; when their joint type realization is some 6_;. We can then express
agent i’s best response problem as follows (we use G; to denote G;(6;):

br;(0;,0_;) = argmax / pi(hi; 0;) Z/ P(0i, S,ayﬁ\ez‘)/ o_i(h_i|0_;)u;(hi; h_;, )
pi(hi|0;)EA(G;) J h; 0, s, h_;

The linearity of the integral and the fact that fhi pi(h1]6;)dh; = 1 means that a maximum must
exists at a vertex/pure strategy. If multiple pure strategies are optimal, then any linear combination
(a mixed strategy) would also be a best-response. However, if there is a unique pure strategy
maximizing this, then it means any mixed strategy must be strictly sub-optimal. In other words,
it suffices to show that the pure-strategy best-response is unique even when others’ play mixed and
correlated strategies. This pure best-response problem is given by:

br;(0;,0_;) —argmaXZ/ (0—i, A|0;) / o_i(h_i|0_;)u;(hi;h_;, )

hi€Gs g~
= arg maXZ/ P(Q_Z‘, A|91)/ U—i(h—i|e—i) |:fl(hl) — thQhZ - Z thAhZ - SBhi]

h;eG; s A h_; i
= arg max fi(hi)du(fi) — hi Qh;

h,eG; Jf,eF

_ [Z/ P(H_Z',S,Oz,ﬁwi)/ J_i(h_i‘(g_i)Zh’fA—i-sB] h;
6 0P P i#1
w? ()

= argmax f; (h;) — h] Qh; — w’ ()h;
hiEGi

where p(f;) is any finite non-negative measure on the function space F, and f* is the result of
the integral. The concavity of the function class F' and non-negativity of measure p ensure that
f* is concave Rockafellar and Wets [23]. Next, we note that w’ () is a T' dimensional vector that
does not depend on the h;. Thus, the objective faced by buyer i is strictly concave (since @ is a
PD matrix — see Lemma [2)) and there is a unique solution. This immediately implies that a mixed
strategy will always be a sub-optimal best-response. O

C.2 Proof of Theorem [3

Proof. As in Theorem [l we express the results from a minimization perspective. That is, each
agent’s best-response for type realization 0; is: argming, ¢, Eg_, njg, [ci(hi, h—i, A)], where ¢;(hi, h—i, X) =
—ui(hi,h_;;X). Also from (1, we note that the necessary and sufficient conditions for an n agent
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BNE with k discrete types and pure strategies for each type, can be interpreted as follows:
Vi € [n],V0; € [k],Vh' € H; : Eg_, Alci(R1(6;), h%(0_;),X) — ¢;(R', h®L(6_;),A)] <0

Since expected utility is a smooth function, as in the Nash setting, the simultaneous conditions can
be expressed as a variational inequality of the cost derivatives: there can exist no feasible direction
at equilibrium at which cost is decreasing. Importantly, this characterization is exact even if the
derivatives are scaled by a distinct constant. Formally, a set of strategies are at a BNE if and only
if the following holds for any choice of v;; — we will choose ~; ¢ = P(6;), the marginal probability of
an agent ¢ being of type 60; € [k] — recall h;(0;) € G;(6;) is the strategy used upon realization 6;:

Vi € [n],V6; € [k], VA (6:) € Gi : (710, V00 Bo_, Alci(hi? (6:), hZ(0-:), M), (W' (6:) — hi?(6:))) = 0

With our choice of scaling v; ¢, and switching the order of gradients and expectation, we have
that for any i, 6;, ’yi’givhi(gi)Eg_h)\[Cz‘(hsq(ei), he_qi(g_z‘), A)]

(Z/Qaﬂh P(6_;, \|6;)
+Z/ {ZAaﬁh +Baﬁs] (0_i, \|6;) — Vhl(e)/fl i( ))du(filﬁi)>

J#i
[/ Qa,sP(a, BlO; )} :) + P(6 ZZ/ SIS /P(ej,e_@,j),xrei)
J#i 05 f 0_(ij s
+f . BassPX0) =P(0) / Fi(ha(0:))du(16:)
bioo, 20, (Ri(6:))
=20 [ QusPla i) |nito) + 5 P00 [/ Ao sPla 3185 |y 0)
o.f j#i 0;
Q7 o, ERTXT Al i, 0; CRTXT

+big; — Pi(0:) - V0, fio, (Ri(0:))

where in the last transition, we use the fact that:
P(Qj, «, ,8‘91) . P(Ql) = P(a, ﬁ, Hj, 91) = P(Oz, B|9Z7 QJ)P(HZ, 9])

We note that u(f;|0;) is a finite non-negative measure on the function space F', and fip, is the result
of the functional integral. The concavity of the function class F' and non—negativft‘y of measure
p ensure that f is a concave function Rockafellar and Wets [23]. Next, let &, = [[;_; ki and
define € = [hi1,...,h1 ks hnt, ..o Rk, € € R™» denote a complete strategy profile (strategy
for each agent for each type). At a high-level, our goal is to show that this operator, denoted by
F, is strictly monotone, which implies the uniqueness of the solution to the equilibrium variational
inequality. That is, we want to show that for all =, (F(x) — F(z'), (z — 2')) > m||x — ='||?.

We can write this operator as follows: F(z) = Mpayes® + b — J(x), where b € R*T has
big, € RT as index (1,0;). Observe that this vector is a constant with respect to the agent strategies.
Similarly, J(x) € R¥7T where at index 4,60;, we have P(0:)Vh,0,) 170, (Ri(0:)) € RT. As for the

26



Mpayes € REvTXFT | we can write this as an n x n block matrix, where each block (i € [n],j € [n])
is a k;T x k;T matrix), defined as follows:

P, = 1)Q:, 0 0
"~ 0 P(0; = 2)Q5, 0
0 0 P(0; = k)Q?,
PO, = 1,0, = DAL, PO, = 1,0, =2)A 5 ... P(6i=1,0;=k)AS,
i P(9; = 2,9]-: —1)A%,., P60 = 2,0, - —2)AYy, .. P(6;=2,0, =k ki) Ay
P(0; = ki, 05 =1)A7, 1 POi=Fk,0; =2)A%, .o ... P(0i=Fki,0; =kj)A7;

Observe that each f, is a concave function. Since for all convex functions, their gradient is a
monotone operator, it is immediate that —(J(x) — J(2’)) > 0. And since b is a constant, it suffices
to show that the matrix M is positive definite. That is, we want to show that =7 Mz > m||z||?.
Observe that:

a:TMbayeSm = Z Z P(Qz)h;r(el)Q:gzhz(el) + Z Z Pij(ei, Gj)hiT(Gi)Ai,gmgj hj(@j)

i=1 6; i#£j 91‘,9'
—ZZ/ T (0:)Qa,shi(0:) > P(0;,6_i,a, )

=1 6; B 0_;

Yy / Aaphi(0;) S P(0.9,,0_ ;0. 8)

i#j 0,0, 0—(i.5)
_Z/ P(8,a,5) [ZhT )Qa,phi(0:) + Y hi (6:)Aa,sh;(9))
JFi
=Eg,0,8 {Zz 0,Qapzio, + Y 2, A sz,ej] = Eg 0,826 Ma,320)
i#£]

where z;9, = > ,1 [9 = (]h;(¢) is a random vector of length 7" and for a realization 6 € [k]",
29 = [210,,---+7np,]T is a concatenation of these n random vectors (of size nT). Further, M, s
is a random matrix which, for any realization of «, 3, is the same as the M matrix used in the
complete information setting. From Theorem we also note that for any «, 8, the symmetric
component of M, g, denoted M, 5 is positive definite; thus, by choosing ¢ = A\pin (M 5) ensures
the strong monotonicity condltlon on the operator M, g. Thus, for any z¢ and any realization
realization of («, 8), there exists a ¢, g such that z} M, szg > 0047/3|]z9||2 when zg # 0.

To determine a uniform bound on ¢ across the randomness of (8, «, 3), let each agent’s type
realization 6, = ¢ occur with non-zero probabilityﬂ Then letting Ppin = min; ¢ P(6; = ¢) be
the smallest probability, and c¢pim = ming g Amin (M, 25) the smallest eigenvalue possible in the

4Note that if a type realization occurs with probability 0, it can be removed from the support without loss of
generality.
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distribution support of «, 3:

mTMbayesx = Ee,a,ﬁ[ze « ,BZB Z / 0 ) B Ca BHZ0| ’2

0|z9#0
2 ) ) 2
Z sznzzp Hz10 H sznpmanwH
p —

We recall from Theorem [I] that for any c-strongly monotone and L-Lipshictz operator F', the
extra gradient algorithm converges linearly to the unique solution of the variational inequality. We
have already shown the operator to be ¢-strongly monotone. Further, since the operator is of the
form Myayes +b— J (), it suffices to show Lipschitzness of each term. The linear operator Myayes
is always Lipschitz, with the constant depending on the norm of this matrix. Since each f € F is
smooth, J(x) is composed of the gradient of some smooth concave function. Therefore, this is also
Lipschitz, with the constant depending on the Hessian of this function. O

C.3 Experimental Setup

Our experimental setting for the Bayesian Simulations is as follows. There are 2 agents and 3
possible types for each agent. The type of an agent 4, 0; is a positive real number that is equal
to the constraint. That is, an agent i of type 6; has a constraint —6; < 17h;(0;) < 6;. We have
01 € [10,15,20] and 2 € [20,25,30]. The joint type distribution P(61,62) is uniform over the 9
possible outcomes.

Each agent’s idiosyncratic utility f; is a linear function: f;(h;(6;)) = r;17h;(6;). The linearity
of this function means it suffices to consider E[r;|6;]. For agent 1, the type conditioned expected
reserves are (3,5,7), and for agent 2, we set (6,8, 10).

Lastly, the variational inequality characterizing the BNE has linear dependence on the a, 5. As
such, it suffices to consider the expected value of these market parameters, conditioned on the joint
type realization. We set E[a|01, 02] = 0.1 and E[B]01, 0] = 455 (01+02), where we have ¢ = 1,10, 100
for the left, middle and right panel. These numbers were chosen to ensure the 8 values were in a
comparable range to those used in the experiments for Section [3| This exact setup, with ¢ = 10, is
used for the online learning experiments for Section

D Proofs and Details for Section [5

In what follows we primarily use the cost notation ¢;(-) (recall that c;(h;(0;);h_i(0-;),A) =
—ui(hi(6:); h-i(6-:), A)).

D.1 Proof of Theorem 4

Proposition 1. Let P be a joint distribution over game instances L. Let o0 € A(H1 X -+- X Hy,) be
a distribution over strategy profiles. Suppose o satisfies for all i, for all 0;, for all h;(0;):

Eh~o Eoa~p[ci(Ri(0i), h_i(0-i),X) — ci(hi(0:), h_i(0—;),A)] <.
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Then, o is an approrimate Bayesian coarse correlated equilibrium, satisfying for all i, for all 6;,

for all h;(0;):

En~o By, anp o, [ci(Ri(0:), hi(0-5),X) — ci(hi(0;), h_i(0_;), A)] < Pl“zei).

Notice that when o is a singleton distribution, this corresponds to an approximate Bayesian Nash
equilibrium.

Proof. We show the contrapositive. Suppose for some agent i, there is a type 6. and action h/(6})
such that

Ehwg Ee,i,)\NP ‘ 9; [Cz(hl(eg), h_i(e_i), )\) — Cz(h;(gg), h—i(g—i)y A)] > PI‘(Q;) .

For each 6;, define

hi(0;) € arg H,lli_n Eh~oEo_, ap|o; [ci(hi, h—i(0-), )] .

(3

By optimality of h}(6;),

En~o Eg_, awr o [ci(h; (01, hi(0-i),A)] < Enwo Eg_, xvp o [ci(Ri(07), hoi(0-:), N)] .

Thus,

EhNJ Egﬂ.,)\,vp | 9; [Cl(hl ((9;), h_i(G_i), )\) — cl(hf(%), h_i (09_1'), )\)] > PI‘(Q;) .

Now consider the gain by a unilateral deviation to h}(6;) for all 6;:
Eh~o Bganp [ci(Ri(0i), h_i(0-3), A) — ci(hj (6;), h—i(6_:), \)]
= Z Pr(0;) Enno By, avp o, [cilPi(0:), h_i(0-3), A) — ci( b (0:), h—i(0_:), A)] .
0;

By optimality of h}(6;) for every 6;, each summand is non-negative. Furthermore, the summand

corresponding to 6 exceeds Pr(6)) - Pr(ea{) = e. Hence the whole sum is > ¢, contradicting the

hypothesis. O

Lemma 4. For all i € [TL], let V;(h) = Vhlfl(hl,h,Z,P) = VhiEgA,vp[ci(hi(t%),h,i(G,i),)\)] S
R¥*T and V(h) = (Vi(h),...,Va(h)) € RV T The operator V is m-strongly monotone, i.e.
(V(R') =V (h),h' — h) > m|h' — h|? for all h,h', where m is the strong monotonicity constant of
Theorem @ Consequently, for all i, {;(h;, h_;; P) is m-strongly convex in h.

Proof. Recall that Theorem |3 shows that the operator W (h) € R™***T defined by:
Wi(6:)(R) = Pr(8;) - Vi) Bo_, awpioi[ci(hi(6i), h—i(6-;), X)) € R

in the entry corresponding to agent ¢ and type 6;, is m-strongly monotone for some positive m.

Now, for every ¢, we can write:
Vi(h) = Vi, | Y _Pr(6:) - Eo_, awppo, [ci(Ri(6:), h—i(6-:), N)]
0;
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Fix a agent ¢ and a type ;. Since each agent has finitely many types, we can write V' as a vector
of size nkT', where the entry of V' corresponding to agent ¢ and type 0 is:

Vi(67)(h) = Vi, 07 ZPT ) - Eo_, a~pi, ci(hi(0;), h—i(0—;), A)]

= Vn) (Prw:) By appz i (Bi(0), hoi(6-0), X))
(since all terms not involving 8 can be treated as constants)
=Pr(07) - Vi, 01 Eo_; avpor[ci(hi(07), h—i(0—;), A)]
= W) ()
Thus V = W, and V is m-strongly monotone, i.e. (V (k') — V(h),h’ —h) > m||h/ — h]]? for all

h,h'. For every i, m-strong convexity then follows by definition, by considering h,h’ that are the
same in all coordinates except 1. ]

Proof of Theorem[{]. For each i and h, by the regret guarantees of Alg;:
| B
= > (@ (h]) = £(h}) = EprBoawplei(hi(6i), hi(0-i), A) — ci(hj(6:), h—i(6_:), N)] < ei(R)
r=1

Applying Proposition |1} we can conclude that for all 6; and all hf(6;):

ei(R)
Pr(6;)

EporBy_, anpo,[ci(Ri(0:), h_i(0-:), X) — ci(hi(6:), h—i(0_:), A)] <

D.2 Algorithm Details

Here we present the algorithm of Jordan et al. [I4] and state its guarantees.

Algorithm 2: AdaOGD (Algorithm 1 of Jordan et al. [14])
Input: Strategy space H;
Initialize h} € H;
Let zg = m
forr=1,...,R do
Sample M" ~ Geometric(zp)

r+1 _ r+1
Let 7 \/l+max{M yeery MM}

Update h] ™' = argminy, ¢y, {(hi — h}) TV} + 77

Al

Theorem 6 (Theorem 3.7 of Jordan et al. [I4]). Consider a game G among n agents, each with
a convex and bounded action set H; C R% and a cost function ¢; : [Tio, Hi — R satisfying: (i)
li(hi, h_;) is continuous in (hi,h_;) and continuously differentiable in h;; (i) Vpli(hi, h—_;) is
continuous in (hi,h_;); (iii) ||k —R'|| < D for all h,h' € [}, Hi; and () G is m-strongly mono-
tone. Suppose at every round r € [R], each agent observes an unbiased and bounded gradient V’"Z
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satisfying B[V}, |h"] = Vhrli(hi,h" ;) and E[H@EHQWW < M. Then, if all agents run Algorithm
[3, the final iterate satisfies:

E [HhR B h*HQ] <0 <D2M(1 +exp(1/(m?log R))) log(nR) log2(R)>

R
where h* is the Nash equilibrium of G, i.e. for alli € [n], for all h; € H;, ¢;(h}, h* ;) < {;(h;, h*)).

D.3 Proof of Theorem [G

Proof. We define the game G where each agent i chooses a strategy map h; € H; and suffers cost:
li(hi, h_i; P) = Eg a~plci(hi(0;), h—i(0_;), A)]

We verify the conditions of Theorem[6|on this game G. Since for all type profiles 8, ¢;(h;(6;), h—i(6—;), X)
is continuous in (h;(0;), h_;(0_;)) and continuously differentiable in h;(6;), we have that ¢;(h;, h_;; P)

is continuous in (h;, h_;) and continuously differentiable in h;. Under Assumption |3| [|h — k|| <
B+/nk for all h,h'. Furthermore, by Lemma {4 G is m-strongly monotone, where m is the strong
monotonicity of Theorem

To apply Theorem [6] it remains to establish that agents observe unbiased and bounded gradient
feedback. Recall at each round r € [R], agent ¢ receives as feedback: @""Z_ = Vp,ci(hI(67),h",(67,), A7).
Since 8", \" ~ P are sampled independently from the strategies chosen at round r, we have that
E[V ;’li|h"] = EWZ%] =E[Vh,c;(R](07), R ;(0",),A")] = Vn,li(h],h" ;; P), i.e. the gradient is unbi-
ased. Moreover, we can compute, for any h;, h_;, 0, A:

[Vhci(hi(0:), h—i(0—;), A) ||

= |po - 1z + @ Thi(6:) + aM [ > "h(0;) — s | + B8 | 2hi(6:) + > hy(0;) — s | — Vi, fi(hi(6))]
i#i i

< |po|VT + aTB +aT((n —1)B+8) + B((n+1)B+8) + U’ (by Assumption [3)

where J € RT*T is the matrix with J;; = 2 for all t € [T] and 1 everywhere else, and M € RT*7 is
the matrix with M = 1 for s < ¢ and 0 everywhere else. Hence,

E[||Vh, I*1R] = E[[|VF,]I°]
= E[||Vh,ci(R{(6]), hZ;(67,), X)||)
< (pomﬁ + mazTB + amazT((n = 1)B + 8) + Braz((n + 1)B + S) + U’)2
= poly(n, T, o, 3, po, B, S,U’)

Above, e = arg max%supp(p){a}, Binazr = arg maxﬂesupp(P){ﬁ}, and po,,,, = arg maxpoesupp(p){]pd}

Therefore, by Theorem [6] the final iterate produced by Algorithm [2] satisfies:

E [HhR B h*||2] <0 (DQM(I + exp(1/m? l;g R))log(nR) logQ(R)>

where h* is the Nash equilibrium of G, and the expectation is taken over the randomness of the
algorithm. Here, we have D = poly(n, k, B) and M = poly(n, T, «, 8, po, B, S,U’).
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Next we show that ¢; is Lipschitz in the f5 norm, which will allow us to argue that since h%
and h* are close in £y distance, they must also incur similar cost. Observe that by Assumption
for any j # 4, for any h;,h_;,0, X:

IVh;ci(hi(0:), h—i(0—:), )| = @M "hi(0;) + Bhi(6:)|| < (aT + B)B
and so:
Sup IVhei(hi(0i), h—i(0—), M|

< |polVT +aTB +aT((n—1)B+S) + 8((n+1)B+S) + U’ +n(aT + )B

=:L'(po,,)

Therefore for all h,h',; 0, A, ¢; is L' (po, o, 8)-Lipschitz in h, i.e.:
lci(hi(0:), h_;(0-i), A) — ci(hi(6:), h—i(0-i),A)| < L'[|h" — h]
Taking expectations, we have that ¢; is L-Lipschitz in h, i.e. for all h, h':

[0i(hi, b 3 P) — Li(hi, h_i; P)| = [Eg a~plei(hi(0:), B ;(0—5), A) — ci(hi (),
< Ega~pllci(hi(0s), B ;(0-:), A) — ci(hi(0;), h—i(0_), X)]
< L||n —h|

where L < maxy, o3 L'(po, o, 8) = poly(n,T,«, 8, po, B, S, U’").

Thus, the cost evaluated at hf is close to the cost evaluated at h*:
E [6;(h}, h* ;s P) — (Rl hE; P)] < L-E[|h" — h*|] (by L-Lipschitzness)

<L-O \/DQM(l + exp(1/m?log R)) log(nR) 10g2(R))

R

In the second inequality, we use that fact that E [[|Rf — h*||]2 < E[||hf — h*||?] by Jensen’s
inequality. Furthermore, since the entries of ||h® — h*|| are non-negative, we also have that for any
h; € H;:
E [¢;(h;,h®;; P) — 4;(hi, h* ;s P)] < L-E[||h", — h*]]] (by L-Lipschitzness)
< L-E[|n" - h*|]

<L-0O \/DQM(l + exp(1/m?log R)) log(nR) logQ(R))

R

Combining the above, we can show that h® is an approximate Nash equilibrium of G. In
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particular, for any 4, for any h; € H;:

E [6;(hf, h®; P) — t;(hi, hE; P)]

D2M (1 + exp(1/m2log R)) log(nR) log?(R)
R

< E [¢;(h},h* ;; P) — ti(hi, K% P)] + L- O \/

—1 —1

2 2 2
<E[t:(hi,h*;; P) — ti(hi, h*5; P)] + 2L - O \/D M(1 + exp(1/m lzgR))log(”R) log”(R)

<2L-0 \/D M(1 + exp(l/m lzgR))log(nR) log®(R)

(by the fact that h* is a Nash equilibrium)

Thus, applying Proposition we can conclude that hf' is an approximate Bayesian Nash
equilibrium. Specifically, for all 7, for all 6;, and for all h;(6;):

E[Eo_, awpjo; [ci(R{(6:), %, (0-3), X) — ci(hi(6), hT;(0_5), N)]]

2L 0 \/DQM(I+exp(1/m2logR))log(nR) log?(R)

< Pr(0)) 7 (by Proposition
poly(n, T, k, a, 8,po, B, S,U") log*?(R)
<0 .
as desired. O

D.4 Experimental Details

The online learning experimental setup follows that of Section Here we provide more details
on the conditional distributions of agent types and market parameters used. Recall that 6; €
[10,15,20] and 62 € [20,25,30], and the joint type distribution P(f1,62) is uniform over the 9
possible type profiles. Agent 1’s linear utility coefficient r1 is drawn from a conditional Gaussian
distribution: 71|67 ~ N (p(61),1) with p(10) = 3, u(15) = 5, and w(20) = 7. Similarly, Agent 2’s
linear utility coefficient r9 is drawn from a conditional Gaussian distribution: r9|6s ~ N (u(62),1)
with 1(20) = 6,1(25) = 8, and p(30) = 10. Thus the type conditioned expected reserves are
(3,5,7) for agent 1 and (6,8, 10) for agent 2. Finally, we fix pg =0, a = 0.1, 8 = 4—10(91 + 62), and
draw s from the Gaussian distribution: for all ¢ € [T, s; ~ N (0,1).

E Learning in the Bayesian Game Without Stochastic Feedback

Here we relax the assumption that agents have access to online algorithms with no-regret guarantees
under stochastic gradient feedback. Instead, we assume access to no-regret algorithms that, given
cost function feedback, can learn over an agent’s strategy space conditional on any type. Recall
that G;(6;) is the set of feasible strategies h;(6;) for agent i and type ;. Given a sequence of costs
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c;, an algorithm Alg achieves average regret bounded by e(R) if:

1 & T T
RO -, iy ch < ()

Mirroring Theorem {4} we show how agents can converge to Bayesian coarse correlated equilib-
rium by running separate instances of such no-regret algorithms, one for each type. The procedure
is described in Algorithm [3| and mirrors the setup used by Hartline et al. [13].

Algorithm 3: No-Regret Learning Protocol Without Stochastic Feedback

Input: No-regret algorithms Alg,

Output: Joint distribution of strategy profiles o € A(H1 X ... X Hy)

Each agent ¢ initializes an instance of Alg, over the action space G;(6;) for every 6; € ©;.

We denote the instance corresponding to 6; by Alg,(6;).
forr=1,...,R do
fori=1,...,n do
For each 0;, let hl(6;) € G;(0;) be the output of Alg,(6;).
Observe §] and take action h} (0]).
Receive cost function ¢} and update Alg,(0]) with ¢]. Update all other Alg,(6;),
0; # 07, with ¢ = 0.

Output empirical distribution over strategy profiles {h!, ..., hf}.

Theorem 7. Fix a joint distribution P over types 6 and instances A. Fix 0 € (0,1). For every
i € [n], suppose there is an algorithm Alg; that, given any G;(6;), and against any sequence cl-l, s clR,
obtains average regret bounded by €;(R) after R rounds. Let ot be the output of the Bayesian no-
regret learning protocol (Algorithm @), when given as input algorithms Alg;. Then, for every agent

i, for every type 6; € ©;, and every h(0;) € G;(0;), with probability at least 1 — §:

)+2H
Pr(9

EporBy  anppolci(Ri(0:), h_i(0-:),X) — ci(hj(0;), h—_i(6—;),X)] <

Here, H = Bpy,,,. \/T—l—amazBT(nB—&—S)—i—ﬂmw (nB+S)+U, where aypqy = arg maxaESupp(P){a},
Brmaz = arg maXﬁGsupp(P){/B}7 and D0sngx = ATEMAX,, csypp(P {’p0|}

First, we show in the following lemma a concentration bound: on any sequence a type 6 was
observed, the agent i’s cost under the empirically observed types and game instances concentrate
around their expected cost.

Lemma 5. Fiz a agent i and a type 07 € ©;. Fiz § € (0,1). Suppose costs are bounded between
[—H, H] uniformly over all types and strategies. Let h', ..., hf be any sequence of strategy profiles,
and let o™ denote the empirical distribution over h',...,h®. Then, with probability at least 1 — §:

<H

=vl e

R
> 1007 = 07T ci (R (07), h75(673),A) — BppoyrBoamp[110; = 07] i (hi(6]), h—i(0-:), A)]
r=1
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Proof. For convenience, let Yj(h,0_;,X) = ¢;(h;(6]),h_;(0_;),\) and I/ = 1[07 = 6;]. Hence we

can write:

R
EZ 0r _ 9*] cz(hr(er) hr r ZIT hr 07;” r).

EhNUREg)\Np [1[92 = 9:] Cz(hz(e;k),h_z(e_z),)\ RZE@ }\NP[ [6 — 9*] cZ(h,T(H ) h”. (0 ),)\)]

1 * r
= E Zp(el )ngi,)vva; [}/Z(h ) 9—i7 A)] .

Thus we want to bound the quantity ‘% SR YR, 67 AT — R op(o: )Eo_, a~plos[Yi(R", 0, )\)]’

r=1"1

Let F<, denote the sequence {I7Y;(h®, 6°,, A%)}s<,. Since types are drawn independently each

round, Ij is independent of F<,_;. Moreover, h" is chosen prior to the draw of 8", A", so 8", A"
are independent of h”. Thus:

E[I;Yi(h', 9217AT)|F§r—1] [E[L7Yi(h", 0", X)) F<pm1, 07| F<r—1]

[1[67 = 67IE[Yi(h", 075, X[ F<r—1, 07| F<r—1]
[1[95 = 07]Ep_, a~plor [Yz‘(hr}9—z‘,>\)\F§r—1HF§r—l]
[ [0F = 07 1En_, a~pior [Yi(hr79—i7)\)]|F§r—1}
hoia~plor[Yi(h", 0—i, A)] - Pr(1(67 = 67][F<r—1]
h_ia~plor [Yi(R",0—;, N)] - Pr[1[0] = 67]]

= p(07)En_; a~pjox[Yi(R", 05, A)].

By Azuma’s inequality:

R
1
§ I'Yi(h', 0", AT)—ﬁZE[I{"K(’E’U%@V)IFST*H
r=1

> m] < 2exp (—m2R>
- - 2H2 )

21;5, we have that with probability at least 1 — §:

Plugging in m > H

R
ZF Yi(h", 0", AT) —%ZE[I’"YW 073, A) | F<pa]

r=

| -
M:u

1
R

LTYi(h", 07, A > p(07)Eg_, awpio:[Yi(RT,0_i, X))

r=1

r=1

| =
WE

107 = 07 ci(R{(6]), hZ;(02:), A) — EpoorBEoa~p [1[0; = 07] ci(hi(6]), h—i(0-:), A)]

\3
I
—

(VAN
el

H

R 9

as claimed. 0
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Now we prove the theorem.

Proof. Let o be the empirical distribution over h!, ..., A%, the history of strategy profiles output
by the learning protocol. Consider a agent i, and fix a type 8] € ©; and any action h}(6;) € G;(6;).
By the regret guarantee of Alg,(67), we have that:

1 r/or r s 1
= Zci (hi(ai)ﬂhfi(afi)’ >‘> R

r=1 T

Ci (h;(ei% hZ;(07,), )‘) < &(R).

WE

Il
—

By construction, on the rounds where 0] # 0, ¢/ = 0 for all actions in G;(6;), and so we equivalently
have:

R
1 T * r r r r 1
7 21107 = 0] ci(R7(6]), RT(07),A) —

r=1 T

(1) (2)

WE

107 = 07] i (hi(6:), h7;(07,), A) < ei(R).

Before analyzing this expression, we bound the magnitude of costs. For any h;,h_;, 0, X, we
have, by applying Cauchy-Schwarz and Assumption

’CZ' (hl(el), h,i(Q,i), )\) {

< Ipoll[Ri(0:) Iy + all MR (0:)] || kj(0;) — s|| + BllRi(@) || hy(0;) — s|| — fi(hi(6:))
j=1

7j=1
< B|po|VT + aBT(nB + S) 4+ BB(nB + S) + U,

where M is the lower triangular matrix. We set H = Bpg, ... VT + Gmae BT (nB+S) + Bmaz B(nB +
S)+U.

Then, to analyze term (1): using Lemma [5| and the fact that:
EporBoawp[1[0; = 0] ci(hi(07), h_i(0—:), X)] = p(6}) ‘EporEg a~por [ci(hi(6), h—i(0—:), )],

we have that with probability at least 1 — g:

R
1
R > 1007 = 07) i (R (67), h75(073), A) — EporBoa~p 110 = 07] c; (Ri(6]), h_i(6-:), A)]
r=1
1 R
IR D 1007 = 07T i (R (67), h75(07), X) = p(67) - EppoyrBo ampior [ci (Ri(6]), hoi(0-:), A)] ‘
r=1
<H 21n%
= R .

Similarly, for term (2): we apply Lemma[f|on the sequence where for all r € [R], b} (6;) = h}(6;)
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for all 8; € ©;, and h”

remains unchanged. We have that with probability at least 1 — §

x| =
M=

16] = 07] ci(hi(0:), hZ;(67,),X) —

<

EhNUREg)‘Np [1[91 = 9:] C; (h;(@z), h—z(g—z) A)}
1

R
1
= | 5 2107 = 05 ci (Ri(0:). W 4(07). N) = p(0]) - BpegnBip anpio; [ci (R(0:), hi(0-), A |
r=1
<" 21n %

R

Thus, we can conclude, with probability at least 1 — ¢

(07) - EpoorEo_ avpjor [ci(Ri(0:), h—i(6-:), X)] —

((9*) . EhNURE97i7)\NP|9: [C,‘ (h;(&z), h,_z-(H_i), A)]
R 1 R 21n 2
Z 16 = 07) i (R7(6), hZi(07), ) + 1 D 1107 = 0] i (hi(64), hZi(07.), A) + 2H | =22
r=1 r=1
21n 2
<¢€(R)+2H ;5 ,

and:

EporBo_, apior [ci(Ri(0:), h—i(6-), N)] —

EporBy_, apior [ci(Ri(0:), h—i(6-:), \)]
2In 2
el(R) +2H Ré

Pr(67)

This completes the proof.
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